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by Shinichi Mochizuki

Section 0: Introduction

In [Tama|, a proof of the Grothendieck Conjecture (reviewed below) was given for
smooth affine hyperbolic curves over finite fields (and over number fields). The purpose
of this paper is to show how one can derive the Grothendieck Conjecture for arbitrary
(i.e., not necessarily affine) smooth hyperbolic curves over number fields from the results
of [Tama] for affine hyperbolic curves over finite fields.

We obtain three types of results: one over number fields, one over finite fields, and
one over local fields. We remark here that when this paper was first written (October
1995), Theorems A and C below were the strongest known results of their respective kinds.
Since then, the author wrote [Mzk2] (November 1995), which gives rise to much stronger
results than Theorems A or C of the present paper. Moreover, the proofs of [Mzk2] are
completely different from (and, in particular, do not rely on) the proofs of the present
paper. Nevertheless, it seems to the author that the present paper still has some marginal
interest, partly because most of the present paper is devoted to the proof of Theorem B
below (which is not implied by any result of [Mzk2]), and partly because it is in some sense
of interest to see how Theorems A or C can be derived within the context of the theory of
[Tama).

Our main result over number fields (Theorem 10.2 in the text) is as follows:

Theorem A: Let K be a finite extension of Q; let K be an algebraic closure of K. Let
Xk — Spec(K) and Xy — Spec(K) be smooth, geometrically connected, proper curves
over K, of genus > 2. Let Ax, (respectively, A X}{) be the geometric fundamental group
of Xk (respectively, X} ). Then the natural map

ISO?TLK(XK,X}{) - Outp(AXK,AX}{)

is bijective. Here, “Out,” refers to outer isomorphisms that respect the natural outer
representations of Gal(K /K) on Ax, and Ax; .

The statement of this Theorem is commonly referred to as “the Grothendieck Conjecture.”
In [Tamal, a theorem similar to Theorem A, except that X is replaced by a hyperbolic
affine curve, is proven. It is a simple exercise to derive the affine case from the proper
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case. On the other hand, to derive the proper case from the affine case is by no means
straightforward; in this paper, we derive the proper case over number fields from the affine
case over finite fields.

In fact, to be more precise, we shall derive the proper case over number fields from
a certain “logarithmic Grothendieck Conjecture” for singular (proper) stable curves over
finite fields. This “logarithmic Grothendieck conjecture,” which is our main result over
finite fields (Theorem 7.4), is as follows:

Theorem B: Let S!°9 be a log scheme such that S is the spectrum of a finite field k,
and the log structure is isomorphic to the one associated to the chart N — k given by
the zero map. Let X'°9 — S'°9 and (X')!°9 — S!°9 be stable log-curves such that at least
one of X or X' is not smooth over k. Let Axioq (respectively, A(xyios) be the geometric
fundamental group of X'°9 (respectively, (X')!°9) obtained by considering log admissible
coverings of X'°9 (respectively, (X')!°9) (as in [Mzk], §3). Then the natural map

ISOmSlog (Xlog, (X,)log) — OutpD(AXlog, A(X/)log)

is bijective. Here, the “D” stands for “degree one (outer isomorphisms).”

This Theorem is derived directly from Tamagawa’s results on affine hyperbolic curves over
finite fields. Its proof occupies the bulk of the present paper.

Finally, by supplementing Theorem B with various arguments concerning the funda-
mental groups of curves over local fields, we obtain the following local result (Theorem
9.8):

Theorem C: Let K be a finite extension of Q,; let A C K be its ring of integers; and let
k be its residue field. Let Xk be a smooth, geometrically connected, proper curve of genus
g > 2 over K. Assume that X admits a stable extension X — Spec(A) such that the
abelian variety portion of Pic’(X}) (where X, = X ®4 k) is ordinary. Then the natural
outer representation

PX : FK - Out(AXK)

of the absolute Galois group of K on the geometric fundamental group of X completely
determines the isomorphism class of X .

Even though this is a rather weak version of the Grothendieck Conjecture (compared to
the results we obtain over finite and global fields), this sort of result is interesting in the
sense that it shows that curves behave somewhat differently from abelian varieties (cf. the
Remark following Theorem 9.8).



Now we discuss the contents of the paper in more detail. Sections 1 through 7 are
devoted to deriving Theorem B from the results of [Tama]. In Section 1, we show how to
recover the set of irreducible components of a stable curve from its fundamental group. In
Section 2, we review various facts from [Mzk]| concerning log admissible coverings, and show
how one can define an “admissible fundamental group” of a stable log-curve. In Section
3, we show how one can group-theoretically characterize the quotient of the admissible
fundamental group corresponding to étale coverings. In Section 4, we show that the tame
fundamental group of each connected component of the smooth locus of a stable log-curve
is contained inside the admissible fundamental group of the stable log-curve. In Section
5, we show how to recover the set of nodes (including the information of which irreducible
components each node sits on) of a stable log-curve from its admissible fundamental group.
In Section 6, we show how the log structure at a node of a stable log-curve can be recovered
from the admissible fundamental group of the stable log-curve. In Section 7, we put all
of this information together and show how one can derive Theorem B from the results of
[Tama).

In Sections 8 and 9, we shift from studying curves over finite fields to studying curves
over local fields. In order to do this, it is necessary first to characterize (group-theoretically)
the quotient of the (characteristic zero) geometric fundamental group of a curve over a local
field which corresponds to admissible coverings. This is done in Section 8. In Section 9,
we first show (Lemma 9.1) that the degree of an isomorphism between the arithmetic
fundamental groups of two curves over a local field is necessarily one. This is important
because one cannot apply Theorem 7.4 to an arbitrary isomorphism of fundamental groups:
one needs to know first that the degree is equal to one. Then, by means of a certain trick
which allows one to reduce the study of curves over local fields with smooth reduction to
the study of curves over local fields with singular reduction, we show (Theorem 9.2) that
one can recover the reduction (over the residue field) of a given smooth, proper, hyperbolic
curve over a local field group-theoretically. The rest of Section 9 is devoted to curves with
ordinary reduction, culminating in the proof of Theorem C. Finally, in Section 10, we
observe that Theorem A follows formally from Theorem 9.2.

The author would like to thank A. Tamagawa for numerous fruitful discussions con-
cerning the contents of [Tamal, as well as the present paper. In some sense, the present
paper is something of a long appendix to [Tama]: That is to say, several months after the
author learned of the results of [Tamal, it dawned upon the author that by using admissible
coverings, Theorem A follows “trivially” from the results of [Tama]. On the other hand,
since many people around the author were not so familiar with admissible coverings or log
structures, it seemed to the author that it might be useful to write out a detailed version
of this “trivial argument.” The result is the present paper.

Finally, the author would also like to thank Prof. Y. Ihara for his encouragement and
advice during the preparation of this paper.



Section 1: The Set of Irreducible Components

Let k be the finite field of ¢ = pf. Fix an algebraic closure k of k. Let I' be the
absolute Galois group of k. Let X — Spec(k) be a morphism of schemes.

Definition 1.1:  We shall call X a multi-stable curve of genus g if dimy(H'(X,0x)) = g,

and X f x ®p k is a finite disjoint union of stable curves over k of genus > 2. If X is

multi-stable, then we shall call X sturdy if every irreducible component of the normalization
of X+ has genus > 2.

Thus, in particular, a curve is stable if and only if it is geometrically connected and multi-
stable. Moreover, a finite étale covering of a multi-stable (respectively, sturdy) curve is
multi-stable (respectively, sturdy).

Suppose that X is stable of genus g > 2. Fix a base-point x € X(k). Then we

may form the (algebraic) fundamental group II et m (X, 2z) of X. Let X © X @ k;

A 71 (X7, z7). Then we have a natural exact sequence of groups

1= A—=-I1IT—-T-—1

induced by the structure morphism X — Spec(k).

The purpose of this Section is to show how the set of irreducible components of X

can be canonically recovered from the morphism Il — T'. Fix a prime [ different from p.

Let us consider the étale cohomology group H*¢ g elt(XE, Z;). Let v : X — X be the

normalization of X. Then we can also consider H" % H elt()?g, Z;). By considering the

long exact cohomology sequence in étale cohomology associated to

0— Z; — Y™y — (V" 2y) /2y — 0

we obtain a surjection H¢ — H™. Let us write H¢ for the kernel of this surjection. (Here,
“e” (respectively, “n”; “c”) stands for étale (respectively, normalization; combinatorial).)
Note that H€ is a free Z;-module of rank Nx — Ix + 1, where Nx (respectively, Ix) is
the number nodes (respectively, irreducible components) of X7. Moreover, H" is a free
Z;-module of rank equal to twice the sum of the genera of the connected components of

X

Thus, we obtain a natural exact sequence of I'-modules

0— H°—= H®— H" —0

Let ¢ € T be the automorphism of k given by raising to the ¢! power. Then one sees
easily that some finite power of ¢ acts trivially on H°. On the other hand, by the Weil
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conjectures (applied to the various geometric connected components of X ), no power of ¢
acts with eigenvalue 1 on H™. We thus obtain the following

Proposition 1.2: The natural exact sequence 0 — H¢ — H® — H"™ — 0 can be
recovered entirely from I — T.

Proof: Indeed, H® = Hom(A,Z;), while H¢ can be recovered by looking at the maximal
Z;-submodule of H® on which some power of ¢ € I acts trivially. O

Let L® = H°*®F;; L° = H°®F;; L™ = H" @ F;. Thus, L° = Helt(XE, F;), and we
have an exact sequence of I'-modules

0—-L°—L°—L"—0

Moreover, elements of L correspond to étale, abelian coverings of X+ of degree [. Let
L* C L° be the subset of elements whose image in L" is nonzero.

Suppose that o € L*. Let Y, — X be the corresponding covering. Then Ny, = [-Nx.
Thus, we obtain a morphism e : L* — Z that maps a +— Iy, . Since L* is a finite set,
the image of € is finite. Let M C L* be the subset of elements a on which € attains its

(13 9

maximum. Let us define a pre-equivalence relation “~” on M as follows:

If o, € M, then we write a ~ f if, for every \,u € F;* for which
ANa+pu-feL* wehave \-a+pu-5€ M.

Now we have the following result:

Proposition 1.3: Suppose that X is stable and sturdy. Then “~7” is, in fact, an

equivalence relation, and moreover, Cx e v / ~ is naturally isomorphic to the set of
irreducible components of Xz..

Proof: First, let us observe, that Iy, is maximal (equal to [(Ix — 1) + 1) if and only if

there exists a unique irreducible component 7, of XE over which the covering Y, — Xt is

nontrivial. Now, if Z is a connected component of XE? let Ly g 1(Z,F;). Thus,

L”:@ Ly
Z

where the direct sum is over the connected components of XE' Then it follows immediately
from the definitions that M consists precisely of those elements o € L* whose image in
L™ has (relative to the above direct sum decomposition) exactly one nonzero component
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(namely, in Lz, ). Moreover, a ~ [ is equivalent to Z, = Zg. Finally, that every Z
appears as a Z, follows from the sturdiness assumption. This completes the proof. ()

Remark: Note that although at first glance the set Cx = M/ ~ appears to depend on the
choice of prime [, it is not difficult to see that in fact, if one chooses another prime [, and
hence obtains a resulting C%y = M’/ ~'  one obtains a natural isomorphism Cx = C%
(compatible with the isomorphisms just obtained of C'x and C to the set of irreducible
components of X7) as follows: If a € M and o' € M’, let us consider the product
Yoo = Yo xx Y. Thus, we have a cyclic étale covering Yoo — X of degree [ -1’. Then
one checks easily that « and o’ correspond to the same irreducible component if and only
if (Yoo )z has precisely [ -I'(Ix — 1)+ 1 irreducible components.

Proposition 1.4: Suppose that X is stable and sturdy. Then the set of irreducible
components of X3 (together with its natural I'-action) can be recovered entirely from
IIm—-r.

Proof: Indeed, it follows from Proposition 1.2 that L* can be recovered from II — T
Moreover, we claim that M can be recovered, as well. Indeed, the maximality of Iy, is
equivalent to the minimality of Ny, — Iy, +1 =1- Nx — Iy, + 1, which is equal to the
dimension over F; of the “L®” of Y. Once one has M, it follows that one can also recover
“~,” hence by Proposition 1.3, one can recover the set of irreducible components of X+.
Finally, by the above Remark, the set that one recovers is independent of the choice of [.

O

Corollary 1.5:  Suppose that X is stable and sturdy. Let H C Il be an open subgroup.
Let Yg — X be the corresponding étale covering. Then the set of irreducible components
of Yy can be recovered from II — I" and H.

Proof: Let k' be the (finite) extension of k& which is the subfield of k stabilized by the
image of H in I". Then Yy is geometrically connected, hence stable and sturdy over &’.
Thus, we reduce to the case H =11, Yy = X. But then the set of irreducible components
of X is the set of I'-orbits of the set of irreducible components of X7. Thus, the Corollary
follows from Proposition 1.4. ()

Looking back over what we have done, one sees that in fact, we have proven a stronger
result that what is stated in Corollary 1.5. Indeed, fix an irreducible component I C X.
Then let J;(I) be the set of k-valued [-torsion points of the Jacobian of the normalization
of I. Then not only have we recovered set of all irreducible components I, we have also
recovered, for each I, the set J;(I) (with its natural Frobenius action). We state this as a
Corollary:



Corollary 1.6:  Suppose that X is stable and sturdy, and | is a prime number different
from p. Then for each irreducible component I of X, the set J;(I) (with its natural
Frobenius action) can be recovered naturally from II — T'.

Section 2: The Admissible Fundamental Group

_ Let r and g be nonnegative integers such that 29 —2+4r > 1. If (C— Mgyp;01,...,00:
Mg, — C) is the universal r-pointed stable curve of genus g over the moduli stack, then C
and M, , have natural log structures defined by the respective divisors at infinity and the

. . . ——
images of the ¢;. Denote the resulting log morphism by C*9 — M ;i. Let X — S be the
underlying curve associated to an r-pointed stable curve of genus g over a scheme S (where

S is the underlying scheme of some log scheme S'°9). Suppose that X is equipped with the
. . . -
log structure (call the resulting log scheme X'°9) obtained by pulling back C*9 — M ;ﬁ

. . -—! . . - .
via some log morphism S'°9 — M g‘j;‘f whose underlying non-log morphism S — M, is

the classifying morphism of X (equipped with its marked points). In this case, we shall
call X9 — §!9 an r-pointed stable log-curve of genus g. Similarly, we have r-pointed
multistable log-curves of genus g: that is, X'°9 — S99 such that over some finite étale
covering S’ — S5, X9 x ¢ S’ becomes a finite union of stable pointed log-curves.

Let k be as in the preceding section. Let S'°9 be a log scheme whose underlying scheme
is Spec(k) and whose log structure is (noncanonically!) isomorphic to the log structure
associated to the morphism N — k, where 1 € N — 0 € k. Let X9 — S99 be a stable
log-curve of genus g > 2.

Next, we would like to consider liftings of X'°9 — S!9  Let A be a complete discrete
valuation ring which is finite over Z,, and has residue field equal to k. Let T%9 be a log
scheme whose underlying scheme is Spec(A) and whose log structure is that defined by the
special point S = Spec(k) C T. Also, let us assume that S'°9 is equal to the restriction of
the log structure of T'9 to S = Spec(k) C T. Let Y'°9 — T!°9 be a stable log-curve of
genus g whose restriction to S'°9 is X'9 — §!°9_ In this case, we shall say that Y°9 — T'og
lifts X'°9 — S'9_ Tt is well-known (from the log-smoothness of the moduli stack of stable
curves equipped with its natural log structure) that such log-curves Y'°9 — T!9 always
exist.

Next, we would like to consider log admissible coverings

Zlog N Ylog

of Y99, We refer to [Mzk|, §3.5, for the rather lengthy and technical definition and first
properties of such coverings. It follows in particular from the definition that Z is a stable
curve over T'. In fact, (as is shown in [Mzk], Proposition 3.11), one can define such coverings
without referring to log structures. That is, there is a notion of an admissible covering
([Mzk]. §3.9) Z — Y (which can be defined without using log structures). Moreover,
Z — Y is admissible if and only if Z admits a log structure such that Z!°9 — Y99 is log
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admissible. In [Mzk]|, we dealt strictly with the case where Z is geometrically connected
over T'. Here, we shall call Z — Y multi-admissible if Z is a disjoint union of connected
components Z; such that each Z; — Y is admissible.

Let n be the generic point of T'. Let Y, =Y x7n. If Z — Y is multi-admissible, then
it will always be the case that the restriction Z,, — Y, of this covering to the generic fiber
is finite étale. Now suppose that v, : Z,, — Y}, is a finite étale covering. If v, extends to
an multi-admissible covering Z — Y, then this extension is unique ([Mzk], §3.13).

Definition 2.1: We shall call 1, pre-admissible if it extends to an multi-admissible
covering : Z — Y. We shall call 1, potentially pre-admissible if it becomes pre-admissible
after a tamely ramified base-change (i.e., replacing A by a tamely ramified extension of

A).

Thus, in particular, if A" is a tamely ramified extension of A, then Y, ®4 A" — Y}, is
potentially pre-admissible. If 1, is potentially pre-admissible and Z, is geometrically
connected over 7, then it is pre-admissible if and only if Z, has stable reduction over A.

Lemma 2.2 :  Suppose that Z, — Y, and Z, — Y, are pre-admissible. Let Z; et
Zy Xy, Zy. Then Z; — 'Y, is pre-admissible.

Proof: Let Z — Y and Z' — Y be the respective multi-admissible extensions. Let Z”
be the normalization of Y in Z;/. Thus, we have a natural morphism Z” — Z xy Z’ which
is an isomorphism at height one primes. In particular, Z” is étale over Y at all height one
primes. It thus follows from Lemma 3.12 of [Mzk| that Z” — Y is multi-admissible. (O

Lemma 2.3 : Suppose that Z, — Y, is pre-admissible, and that Z, — Y, factors
through finite étale surjections Z, — Z, and Z, —Y,. Then Z] — Y, is pre-admissible.

Proof: Similar to that of Lemma 2.2. ()

Let K be the quotient field of A. Fix an algebraic closure K of K. Suppose that YV
is equipped with a base-point y € Y (A) such that the corresponding morphism 7" — Y
avoids the nodes of the special fiber of Y. Write IIy for ﬂl(YK,y?). Thus, we have a

natural surjection Iy — Gal(K /K), whose kernel is a group Ay C Iy,

Definition 2.4: We shall call an open subgroup H C 1ly co-admissible if the corre-
sponding finite étale covering Z, — Y, is potentially pre-admissible. Let 11¢%™ be the
quotient of Iy by the intersection (| H of all co-admissible H C Ily .
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Remark: The admissible fundamental group I1¢4™ has already been defined and studied
by K. Fujiwara ([Fuji]). Moreover, the author learned much about IT$#™ (as well as about
the theory of log structures in general) by means of oral communication with K. Fujiwara.

It is easy to see that the intersection [| H of Definition 2.4 is a normal subgroup of
IIy. Thus, II$4™ is a group. Moreover, by Lemmas 2.2 and 2.3, it follows that an open
subgroup H C Iy is co-admissible if and only if Ker(Ily — I1¢%™) C H. Finally, it is
immediate from the definitions that the subfield of K stabilized by the image of (| H in
Gal(K/K) is the maximal tamely ramified extension K, of K. Thus, we have a surjection

Y™ — Gal(Ko /K)

whose kernel A?flm - H%dm is a quotient of Ay.

Definition 2.5:  We shall refer to as orderly coverings of Y, those coverings Z, — Y,
which are Galois and factor as Z, — Y, xr U — Y,, where the first morphism is pre-
admissible; the second morphism is the natural projection; U = Spec(B); and B is a
tamely ramified finite extension of A. We shall refer to as orderly quotients of T144™ those
quotients of TI¢4™ that give rise to orderly coverings of Yy,.

It is easy to see that orderly quotients of I1¢4™ are cofinal among all quotients of TI¢4™.

Let Ao € K be the normalization of A in K. Let ks (respectively, mo,) be the
residue field (respectively, maximal ideal) of A,,. Let T, = Spec(A ), and let us endow
T with the log structure given by the multiplicative monoid Or _ — {0} (equipped with
the natural morphism into Or_). We call the resulting log scheme T'9. Let S!%9 be
the log scheme whose underlying scheme is Spec(ks) and whose log structure is pulled
back from T7%9. Thus, the log structure on S is (noncanonically!) isomorphic to the log
structure defined by the zero morphism (Z,))>0 — koo. (Here “(Z(;,))>0" denotes the set of
nonnegative rational numbers whose denominators are prime to p.) Note that Gal( K /K)
induces S'°9-automorphisms of S'%9. In fact, it is easy to see that this correspondence
defines a natural isomorphism

Gal(Ko /K) 2 Aut gog (S29)

Now we have the following important

Lemma 2.6 :  Suppose that we are given:

(1) another lifting (Y')°9 — (T")"9 (where T' = Spec(A’)) of X'°9 — Slog

(2) an algebraic closure K of K' = Q(A") (hence a resulting K/ C K';
(8")9);



(3) an S'°9-isomorphism 7y : S'°9 =2 (S")o9;

(4) a base-point y' € Y'(A’) such that y|s = y'|s in X (k).

Then there is a natural isomorphism between the surjections ¢4 — Gal(K. /K) and
¢dm — Gal(K. /K.

Proof: Let us first consider coverings of Y, obtained by pulling back tamely ramified
Galois coverings of K. Thus, if U = Spec(B) — T is finite, Galois, and tamely ramified
(obtained from some field extension K C L), let U be the log scheme obtained by
equipping U with the log structure defined by the special point v of U. Thus, we obtain a
finite, log étale morphism U!?9 — T'°9. By base-changing to S!°9, we then obtain a finite,
log étale morphism V%9 — S§%9. On the other hand, by the definition of “log étaleness,”
this morphism then necessarily lifts to a finite, log étale morphism (U’)9 — (T")l9,
whose underlying morphism U’ — T” is a Galois, tamely ramified finite extension. Thus,
if we pass to the limit, and apply this construction to the extension L = K., of K, we
end up with some maximal tamely ramified extension L’ of K’. By the functoriality of
this construction, we have a natural isomorphism Gal(L/K) = Gal(L'/K"). Now observe
that there is a unique K’-isomorphism L’ = K  which (relative to this construction) is
compatible with 7. Thus, we get an isomorphism Gal(L'/K') = Gal(K. /K’), hence an
isomorphism Gal(K/K) = Gal(K._/K'), as desired.

Now let us consider orderly coverings Z, — Y,. Thus, we have a factorization
Zy — Y, xp U — Y,. Let Z be the normalization of Y, in Z. Then Z — Y xr U is
multi-admissible. Thus, Z admits a log structure such that we have a log multi-admissible
covering Z'9 — Y99 x.., U9, Base-changing, we obtain a log multi-admissible cov-
ering Z'%9)giog — X9 X g0y V1?9, But since log multi-admissible coverings are log
étale, it thus follows that this covering lifts uniquely to a log multi-admissible covering
(Z")le9 — (Y")log X (prytos (U’ )9 Similarly, we obtain a bijective correspondence between
Yy-automorphisms of Z, and Y,,-automorphisms of Z;,. Now observe further that Ko.-
valued points of Z, over yx_ define As-valued points of Z over y (since Z is proper over
A). Moreover, these points define T.2%-valued points of Z'°9 over y, 100, hence (by reduc-

ing modulo M) SY%9-valued points of Z'°9|gis over ygios, hence (using 7) (S)29-valued
points of Z'°9|gies OVEr Ygios = Y., hence (by log étaleness) (17)129-valued points of
(Z")!°9 over yl.,,, which, finally, give rise to K’ -valued points of Z), over y}q)o.

Thus, in summary, we have defined a natural equivalence of categories between orderly
coverings of Y, and orderly coverings of Yé,. Moreover, this equivalence is compatible
with the fiber functors defined by the base-points yx_._ and y}(éo. Thus, we obtain an
isomorphism between the surjections I1¢%™ — Gal(K /K) and 11¢4™ — Gal(K/ /K'), as
desired. O

Now let us interpret Lemma 2.6. In summary, what Lemma 2.6 says is the following:
Suppose we start with the following data:
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(1) a log scheme S'9, where S = Spec(k), and the log structure is (non-
canonically!) isomorphic to the log structure associated to the zero
morphism N — £;

(2) a log scheme S99 over S'°9 which is (noncanonically!) k-isomorphic to
Spec(k) equipped with the log structure associated to the zero morphism
(Zp))>0 — k (where the N C (Z,))>0 is pulled back from a chart for

Slo9 as in (1));
(3) a stable log-curve X9 — S'9 of genus g;

(4) a base-point x € X (k) which is not a node.

Then, to this data, we can naturally associate an “admissible fundamental group” Hg(dm

with augmentation %™ — Tlguoq et Autgiog (S129). That is to say, by choosing a lifting

of the above data, we may take H‘)L(dm = Haydm, and the augmentation to be H‘{,dm —
Gal(K«/K). Then Lemma 2.6 says that, up to canonical isomorphism, 14" and its
augmentation do not depend on the choice of lifting.

Definition 2.7:  We shall refer to the data (1) through (4) above as admissible data
of genus g. Given admissible data as above, we shall write (X9 ,xségg) for Hg(dm and
71 (S99, 8199) for M gios. We shall refer to TI3™ as the admissible fundamental group of X.
Write Axios C T199™ for the kernel of the augmentation. We shall refer to Axi.y as the
geometric admissible fundamental group of X.

Next, let us observe that I1gi., admits a natural surjection onto Ilg L Gal (k/k). We
shall denote the kernel of this surjection by Ig C Ilgis, and refer to Is as the inertia
subgroup of Mgios. Note that Is is isomorphic to the inverse limit of the various (k')* (for
finite extensions k’ C k of k), where the transition morphisms in the inverse limit are given
by taking the norm. Or, in other words, Ig = 2’(1)7 where Z is the inverse limit of the
quotients of Z of order prime to p, and the “(1)” is a Tate twist. Thus, we have a natural
exact sequence

1— Ig =Z'(1) = Hgiog — Mg = Gal(k/k) — 1

Suppose that we are given a continuous action of Ilgi.s on a finite set . Then we can
associate a geometric object to X as follows. Without loss of generality, we can assume
that the action on X is transitive. If we choose a lifting T of S'°9 (where T' = Spec(4)),
then Y corresponds to some finite, tamely ramified extension L of K. Let B be the

normalization of A in L. Equip U def Spec(B) with the log structure defined by the special
point u of U. Thus, we obtain U"9. Equip Spec(k(u)) with the log structure induced by
that of U'°9. Then the geometric object associated to ¥ is the finite, log étale morphism
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Spec(k(u))t°9 — S99, We shall call such morphisms finite, tamely ramified coverings of
Slog,

Now suppose that we have an open subgroup H C TI4™ that surjects onto Ilgi.s. Let

Ay f o (N Axiog. In terms of liftings, H corresponds to a finite étale covering Z, — Y;,,

where Z,, is geometrically connected over 7. Note that by a well-known criterion ([SGAT]),
Zy has stable reduction over A if and only if /5 acts unipotently on Hom(Ap,Z;) (for some
prime [ distinct from p). But, as noted above, in this situation, Z, has stable reduction if
and only if Z, — Y, is pre-admissible. If Z, — Y, is pre-admissible, it extends to some
Z'9 — Ylo9 which we can base-change via S'°9 — T'99 to obtain a log admissible covering
79| g10s — X'°9. Conversely, every log admissible covering of X'9 can be obtained in
this manner. Thus, in summary, we have the following result:

Corollary 2.8:  The open subgroups of [1%™ that correspond to orderly coverings can be
characterized entirely group-theoretically by means of I1%™ — Tlgiy (and Hgios — Ilg).
Moreover, these subgroups can be interpreted in terms of geometric coverings of X'°9
(namely, base-change via a finite, tamely ramified covering of S'°9, followed by a log
admissible covering).

Remark: Note that this Corollary thus allows us to speak of “orderly coverings of X'°9”
i.e., coverings that arise from orderly quotients (Definition 2.5) of T14¢™ = I134™.

Before continuing, let us make the following useful technical observation:

Lemma 2.9 :  Given any stable X over k, there always exists an admissible covering
Z — X such that Z is (multi-stable and) sturdy.

Indeed, this follows from the definition of an admissible covering, plus elementary com-
binatorial considerations. Moreover, an admissible covering of a sturdy curve is always
sturdy. Thus, if one wishes to work only with sturdy curves, one can always pass to such
a situation by replacing our original X by some suitable admissible covering of X.

Finally, although most of this paper deals with the case of nonpointed stable curves,
it turns out that we will need to deal with pointed stable curves a bit later on. In fact, it
will suffice to consider pointed smooth curves. Thus, let g and r be nonnegative integers
such that 29 —2+7r > 1. Let S%%9 — S%9 be as above, and let X'°9 — S'°9 be an r-pointed
stable log-curve of genus g such that X is k-smooth. Also, let x € X (k) be a nonmarked
point. Then it is easy to see that, just as above, we can define (by considering various
liftings to some A, then showing that what we have done does not depend on the lifting)
an admissible fundamental group T14™ (with base-point xségg), together with a natural
surjection

Hade — Hslog

12



Moreover, the kernel A yi,, C TI%™ of this surjection is naturally isomorphic to the tame
fundamental group of X (with base-point ). Unlike the singular case, we don’t particu-
lar gain anything new by doing this, but what will be important is that we still nonetheless
obtain a natural surjection %™ — Tlgi., which arises functorially from the same frame-
work as the nontrivial 1™ — TIg.., that appears in the case of singular curves.

Section 3: Characterization of the Etale Fundamental Group

We maintain the notation of the preceding Section. Thus, in particular, we have a
stable log-curve X9 — §!°9 together with a choice of S'%9, and a base-point z € X (k)

oo )
(which is not a node). Then note that we have a natural morphism of exact sequences:

1 h— AXlog — Hade h— HSlog — 1

l l !

1 — Ax — IIx — IIg — 1

Here the vertical arrows are all surjections. The goal of this Section is to show how one
can recover the quotient H‘)L(dm — IIx group-theoretically from Hg(dm — Ilgiog.

Let Y9 — X'!9 be a log admissible covering which is abelian, with Galois group
equal to F;, where [ is a prime number (which is not necessarily distinct from p). Let us
consider the following condition on this covering:

(*) Over k, there is an infinite log admissible covering Z!°9 — Xli_og which

is abelian with Galois group Z; such that the intermediate covering

corresponding to Z; — F; is YEZOQ — ZEOQ .
Here, by “infinite log admissible covering,” we mean an inverse limit of log admissible
coverings in the usual finite sense. Suppose that Y!°9 — X'°9 satisfies (*). Then we claim
that Y — X is, in fact, étale. Indeed, if p = [, then every abelian log admissible covering
of degree [ is automatically étale, so there is nothing to prove. If p # [, then we can fix a
node v € X, and consider the ramification over the two branches of X at v. Considering
this ramification gives rise to an inertia subgroup H C Z;. If Y9 — X9 is ramified
at v, then H surjects onto F;, so H = Z;. On the other hand, by the definition of a
log admissible covering, in order to have infinite ramification occuring over the geometric
branches of X at v, we must also have infinite ramification over the base S'°9. But, by
(*), Z'°9 — X9 ig already log admissible over S'°9 @, k (which is, of course, étale over
S'°9) . This contradiction shows that Z'°9, and hence Y'°9, are unramified over X'°9 at v.
Thus, we see that (*) implies that Y — X is étale, as claimed. Note that conversely, if we
know that Y — X is étale to begin with, then it is easy to see that (*) is satisfied. Thus,
for an abelian log admissible covering Y'?9 — X!99 of prime degree [, (*) is equivalent to
the étaleness of Y — X.

13



Now observe that the kernel of Aoy — Ax is normal not just in A x4, but also in
98m. Let Iy = T199™ /Ker(Axios — Ax). Let A’y be the kernel of I — IIg. Thus,
Ax C A’y CII'y. Then we have the following result:

Proposition 3.1:  The quotient T14™ — TI’; can be recovered entirely group theoreti-
cally from TI4™ — Tlgio .

Proof: It suffices to characterize subgroups H C Hg(dm of finite index that contain
Ker(Axios — Ax). Without loss of generality, we may assume that H is normal in
Hg(dm and (by Corollary 2.8) corresponds to an orderly covering. Since an orderly covering
may be factored as a composite of a log multi-admissible covering followed by a tamely
ramified covering of S'°9, one sees immediately that we may reduce to the case where
H corresponds to a log admissible covering. Let G = Hg(dm JH. Let Y9 — X9 be
the corresponding covering. For every subgroup N C G, denote by Y9 — in,og the
corresponding intermediate covering. By considering ramification at the nodes, one sees
immediately that ¥ — X is étale if and only for every cyclic N C G of prime order,
Y — Yy is étale. But for such N, the étaleness of Y — Yy is equivalent to the condition
(*) discussed above. Moreover, it is clear that (*) can be phrased in entirely group theoretic
terms, using only I14™ — I gies (and gy — Ilg). This completes the proof. O

Now suppose that Y°9 — X9 is an abelian orderly covering of prime order | obtained
from a quotient of II'y such that Y is geometrically connected. Assume [ # p. Consider
the following condition on Y'°9 — X'09:

(1) There do not exist any infinite abelian orderly coverings Z!°9 — X’i_og

with Galois group Z; that satisfy both of the following two conditions:
(i) the intermediate covering corresponding to Z; — F; is YEZOQ — X’i_og :
(ii) some finite power ¢™ of the Frobenius morphism ¢ € I' = Ilg

stabilizes Z'°9 — X%Og and acts on the Galois group Z; with eigenvalue
M
q™.

Because Y'!?9 — X9 is abelian of prime order, it follows that one of the following holds:
(1) Y9 — X9 is obtained from an étale covering Y — X (where Y is

geometrically connected) base-changed by S%°9 — S.

(2) Y9 — X9 is obtained by base-change via X'°9 — S9 from some
totally (tamely) ramified covering of S'9.

Suppose that (1) is satisfied. Then we claim that (1) holds. Indeed, if this were false, then
(2) would hold, but it is clear that if (2) holds, then one can easily construct Z°9 — Xlzog
that contradict (1) (by pulling back via X'°9 — S%9 an infinite ramified covering of S°9).

14



This proves the claim. Now suppose that (1) holds. Then we claim that (}) is satisfied.
To prove this, suppose that there exists an offending Z!°9 — Xlzog . This offending covering
defines an injection Z; — Hom(Ay,Z;) — Hom(Ax,Z;) = H}, (X5, Z;). On the other
hand, as we saw in Section 1, by the Weil conjectures, no power ¢ of ¢ acts with eigenvalue
¢ on H ;t(XE’ Z;). This contradiction completes the proof of the claim. Thus, in summary,
(1) is equivalent to (f). In other words, we have essentially proven the following result:

Proposition 3.2:  The quotient T14™ — Tlx can be recovered entirely group theoreti-
cally from TI4™ — Tlgio .

Proof: It suffices to characterize finite index subgroups H C II'y that contain Ker(Ily —
ITx). Without loss of generality, we may assume that H is normal in Iy and (by Corol-
lary 2.8) corresponds to an orderly covering. Let G = Iy /H. Let Y9 — X!°9 be the
corresponding covering. Again, without loss of generality, we may assume that Y is geo-
metrically connected over k. For every normal subgroup N C G, denote by Y]i]og — X'log
the corresponding intermediate covering. Next, we observe the following: Y'9 — X'og
arises from an étale covering of X if and only if, for every normal subgroup N C G such
that Yzijog — X9 is orderly and G//N is cyclic of prime order, Yy — X arises from an
étale covering of X. (This equivalence follows immediately from the definitions and the
fact that A’y /Ax is abelian.) But for such infog — X9 we can apply the criterion (f)
discussed above. Moreover, it is clear that () can be phrased in entirely group theoretic
terms, using only Iy — Ilgios (and gies — IIg). This completes the proof. O

Section 4: The Decomposition Group of an Irreducible Component

We maintain the notation of the preceding Section. Fix an irreducible component
I C X. Then, corresponding to I, there is a unique (up to conjugacy) decomposition
subgroup

ACILdm g Hade

which may be defined as follows. Let Z'°9 — X9 be the log scheme obtained by taking
the inverse limit of the various Y;;’g — X'9 corresponding to open orderly subgroups
H C H‘}(dm. Choose an “irreducible component” J C Z that maps down to I C X. Here,
by “irreducible component of Z,” we mean a compatible system of irreducible components
Iy € Yy. Then A‘}dm - H‘)”(dm is the subgroup of elements that take the irreducible
component J to itself. We can also define an inertia subgroup

; d
Az[n gACIL m

as follows: Namely, we let A’ be the subgroup of elements of A%¥™ that act trivially on
J. (That is to say, elements of A’ will, in general, act nontrivially on the log structure of
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J, but trivially on the underlying scheme .J.) By Proposition 3.2 and Corollaries 1.5 and
1.6, we thus obtain the following;:

Proposition 4.1: Suppose that X is stable and sturdy. Then one can recover the
set of irreducible components of X from T1%™ — Tlgi,. Moreover, for each irreducible
component I of X, one can recover the corresponding inertia and decomposition subgroups
A}" - A‘I‘dm - Hg(dm entirely from Hg(dm — I giog .

Proof: That one can recover A%¥™ follows formally from Proposition 3.2 and Corollary
1.5. Now observe that (as is well known — see, e.g., [DM]) any automorphism of I that acts
trivially on J;(I) (where | > 5) is the identity. This observation, coupled with Corollary
1.6, allows one to recover A, (O

Now let us suppose that the base-point x € X (k) is contained in I. Let I be the
normalization of /. Then one can also define A‘}dm as follows. Let I C I be the open

subset which is the complement of the nodes. We give Ia log structure by restricting to I
the log structure of X log - Denote the resulting log scheme by Ilog. Now let us regard the
points of I that map to nodes of I as marked points of I. This gives I the structure of a
smooth, pointed curve over k. Because I — Spec(k) is smooth, it follows that there exists
a unique multistable pointed log-curve Iy — § ZN"Q whose underlying curve is I and whose
marked points are as just specified. Since x € I(k), by using S — S, we can define
(as in the discussion as the end of Section 2) the admissible fundamental group 1199™ of

I'°9. Moreover, we have natural log morphisms

jlog Xlog

l

where the vertical morphism is an open immersion. Now observe that if we restrict (say,
orderly) coverings of X'°9 to I'°9, such a covering extends naturally to an orderly covering
of I'°9. Thus, we obtain a natural morphism

adm adm
Cr I — Il

It is immediate from the definitions that the subgroup (;(I1$%™) C TI14¢™ is a “A¢dm.”

Proposition 4.2: Suppose that X is stable and sturdy. Then the morphism (; is
injective.

Proof: Let Hglog be the image of H?dm in Ilgiog. Then let us note that we have a
commutative diagram of exact sequences:
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- adm I
1 — AIZOg — HI — HSlog

l l !

1 h— Axlog — HC)L(dm h— HSlog — 1

_ 1

where the vertical arrow on the right is the natural inclusion. Thus, it suffices to prove
that A~ Tiog — A xi0g is injective. In particular, we are always free to replace S'°9 by a

finite, tamely ramified covering of S%°9.

Now it suffices to show that (up to base-changing, when necessary, by finite, tamely
ramified coverings of S'°9) we can obtain every log admissible covering of Jlog by pulling
back a log admissible covering of X'9. Let us call X untangled at I if every node of X
that lies on I also lies on an irreducible component of X distinct from I. In general, we
can form a (“combinatorial”) étale covering of X as follows: Write X = I U J, where J is
the union of the irreducible components of X other than . Let I 1 and I (respectively,
J1 and Js) be copies of I (respectively, J). For i = 1,2, let us glue I; to J; at every node
of I that also lies on J. If v is a node of I that only lies on I, let o and 3 be the points
of I that lie over v. Then glue a; € Il to By € I5, and (1 € Il to ag € 1. With these
various gluings, I 1 U IQ U J1J J2 forms a curve Y which is finite étale over X. Moreover,
Y is untangled at I; and I, and I194m = 119%™ (for i = 1,2). Thus, it suffices to prove the
Proposition under the assumption that X is untangled at I. Therefore, for the remainder
of the proof, we shall assume that X is untangled at I.

Now we would like to construct another double étale covering of X. For convenience,
we will assume that p > 3. (The case p = 2 is only combinatorially a bit more difficult.)
Write X = I'|J J, as above. Since X is sturdy, it follows that (after possibly enlarging k),
there exists an étale covering J — J of degree two such that for any irreducible component
C C J, the restriction of J — J to C is nontrivial. Let I; and I be copies of I. If v is
a node on I and J, let « (respectively, () be the corresponding point on I (respectively,
J). (After possibly enlarging k) we may assume that J has two k-rational points 31 and
B2 over 3 € J. Now, for i = 1,2, glue a;; € I; to 3; € J. We thus obtain a double étale
covering Y = I; | JIx|JJ — X. Endow Y with the log structure obtained by pulling back
the log structure of X'9. One can then define various log structures on the irreducible
components of Y, analogously to the way in which various log structures were defined on
an irreducible component I of X above. We will then use similar notation for the log
structures thus obtained on irreducible components of Y.

Now let L9 — I'°9 be a Galois log admissible covering of I'°9 def Jlog (recall that

I=1 ) of degree d. Let M9 — J'°9 be an abelian log multi-admissible covering of degree
d with the following property:

(*) For each node v on I and J, suppose that over the corresponding
a € I, L has n geometric points, each ramified with index e over I.
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Then, we stipulate that for ¢ = 1,2, over 3; € J , M has n geometric
points, each ramified with index e over I.

Note that such an M9 — Jl°9 exists precisely because the (’s on J come in pairs. Now
let L' and LYY be copies of L'9. Then, for each i = 1,2, let us glue the geometric
points of L;|,, to those of M|g,. This gives us (after possibly replacing S'°9 by a tamely
ramified covering of 5'°9) a log admissible covering Z'°9 — Y9 where Z = Ly |J L2 |J M.
Moreover, the restriction of Z/°9 — Y09 to Ifog (for i = 1,2) is L!°9 — I'°9. This completes
the proof of the Proposition. ()

Section 5: The Set of Nodes

We continue with the notation of the preceding Section. Thus, X'°9 — %9 ig a stable
log-curve of genus g. Let us also assume that X is sturdy. In this Section, we would like
to show how (by a technique similar to, but slightly more complicated than that employed
in Section 1) we can recover the set of nodes of X. This, in turn, will allow us to recover
the decomposition group of a node. In the following Section, we shall then show how the
log structure at a node can be reconstructed from the decomposition group at the node.

Let [ and n be prime numbers distinct from each other and from p. We assume
moreover that | = 1 (mod n). This means that all n'* roots of unity are contained in F;.
Let us write G, C F[* for the subgroup of nt" roots of unity. Next, let us fix a G,,-torsor
over X+

Y - X

which is nontrivial over the generic point of every irreducible component of X5 (Here,
by G,-torsor, we mean a cyclic étale covering of X of degree n whose Galois group
is equipped with an isomorphism with G,.) Equip Y with the log structure pulled

back from that of X'°9. Let us consider the admissible fundamental group II{4™ of

vios Let H!, (Y19 F) o Hom(Ay04,F;). Note that we have a natural injection

k
e ¥ HL(Yy, F) — L° f Hgdm(YEZOg,Fl). Let us write L" for the cokernel of this in-
jection. (Here, “e” (respectively, “a”; “r”) stands for “étale” (respectively, “admissible”;

“ramification”). Thus, we have an exact sequence

0—-L—-L*"—=L"—0

which may (by Proposition 3.2) be recovered from %™ — Ilgi, and the subgroup of
Hg}dm that defines Y — X. Note, moreover, that G,, acts on the above exact sequence.
Let Ly, € L" be the subset of elements on which G, acts via the character G,, — le Let
L* C L be the subset of elements that map to nonzero elements of Lg,.
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We would like to analyze LY,. First of all, let us consider L". For each node v € Y (k),
write Y, for the completion of Y at v, and let v, and d,, be the two irreducible components
of Y,. Let D} (respectively, Ey) be the free F;-module which is the direct sum of copies of
F;(—1) (where the “(—1)” is a Tate twist) generated by the symbols ~,,, §, (respectively, I),
as v (respectively, I) ranges over all the nodes of Y, (respectively, irreducible components
of Yz). Let Dy C Dy be the submodule generated by (v, — d,) - Fi(—1) (where v ranges
over all the nodes of Y, ). Note that we have a natural morphism Dj, — Ey given by
assigning to the symbol =, (respectively, d,) the unique irreducible component I in which
v (respectively, ,) is contained. In particular, restricting to Dy, we obtain a morphism

Dy — Ey

Let Ky C Dy be the kernel of this morphism. Now let us note that we have a natural
morphism

)\:LT—>D3/

given by restricting an admissible covering of Yz to the various v, and ¢,. It follows
immediately from the definition of an admissible covering that Im(\) C Dy. Moreover,
by considering the Leray- Serre spectral sequence in étale cohomology for the morphism
I« I (where I C Y7 is the normalization of an irreducible component of Y7, and I is the
complement of the pomts that map to nodes), plus the definition of an adrms&ble covering,
one sees easily that, in fact, A(L") = Ky. Finally, by counting dimensions, we see that
A is injective. Thus, we see that A defines a natural isomorphism of L™ with Ky . In the
following, we shall identify L" and Ky by means of .

Now let us consider the subset Ly, C L". Let p € X (k) be a node. For each such g,
let us fix a node v € Y (k) over u. If o € G,, (regarded as the Galois group of Y — X)), we
shall write a, € F}* for o regarded as an element of F;*. Fix a generator w € F;(—1). Let

w23 (a7t w)(o(w) — 0(6,)) € Dy

ceGy

One checks easily that w), is, in fact, an element of Ky = L". Moreover, by calculating
T(w,) (for 7 € G,,), one sees that w,, is manifestly an element of Ly, C L". Finally, it is
routine to check that, in fact, Ly, is freely generated by the w,, (as p ranges over the nodes
of X (k) — but w is fixed). This completes our analysis of LZ,.

Suppose that o € L*. Let Z, — Yz be the corresponding covering. Let € : L* — Z
be the morphism that maps « to Nz_ (i.e., the number of nodes of Z,,). Let M C L* be
the subset of elements a on which e attains its maximum. Let us define a pre-equivalence

13 7

relation “~” on M as follows:

If o, € M, then we write a ~ f if, for every A, € F for which
Aa+p-peLl* wehave \-a+pu-p3 € M.
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Now we have the following result:

1143 2

Proposition 5.1: Suppose that X is stable and sturdy. Then “~” is, in fact, an
equivalence relation, and moreover, M/ ~ is naturally isomorphic to the set of nodes of

X

Proof: Suppose that o € L* maps to a linear combination (with nonzero coefficients) of
precisely ¢ > 1 of the elements w,, € Lg;. Then one calculates easily that Z, has precisely
e(a) =I(Ny —cn)+cen=1-Ny +cn(1—1) nodes. Thus, €(«) attains its maximum precisely
when ¢ = 1. Thus, M C L* consists of those o which map to a nonzero multiple of one of
the w,’s. It is thus easy to see (as in the proof of Proposition 1.3) that M/ ~ is naturally

isomorphic to the set of nodes p € X(k). O

Remark: Note that at first glance the set M/ ~ appears to depend on the choice of n, I,
and Y — X. However, it is not difficult to see that in fact, if one chooses different data
n' #mn,l" #1,and Y’ — X, and hence obtains a resulting M’/ ~’, then there is a natural
isomorphism (M/ ~) = (M’'/ ~') (compatible with the isomorphisms just obtained of
M/ ~ and M’/ ~" to the set of nodes of X7) as follows: If « € M and o’ € M’, let us
consider the product Zn = Zo X x Z.,. Thus, we have an admissible covering Zno — X
of degree (In)(I'n’). Then one checks easily that « and o’ correspond to the same node if
and only if (Zya )y has precisely nn'{l - I'(Nx — 1) 4 1} nodes.

Proposition 5.2:  Suppose that X is stable and sturdy. Then the set of nodes of X+
(together with its natural Ilg-action) can be recovered entirely from T14™ — T gios. More-
over, (relative to Proposition 1.4) for each node i of X+, the set of irreducible components
of Xz containing p can also be recovered entirely from 48m — Tlguog .

Proof: Indeed, (after possibly replacing k£ by a finite extension of k) one can always
choose [, n, and Y — X as above. Then one can recover L¢ and L% from IT1%™ — Tlgio,
and the subgroup of I14™ defined by Y — X. Thus, one can also recover L". We saw in
Section 1 that for any Z,, Nz, —1z_, as well as Iz_, may be recovered group-theoretically.
In particular, Nz_ can also be recovered group-theoretically. Thus, M and ~ can also be
recovered group-theoretically. Moreover, by the above Remark, M/ ~ is independent of
the choice of n, [, and Y — X. (That is to say, the isomorphism (M/ ~) = (M'/ ~') of
the above Remark can clearly be recovered group-theoretically.) This completes the proof
that the nodes can be recovered group-theoretically.

Now let us consider the issue of determining which irreducible components of X5 (rel-
ative to the reconstruction of the set of irreducible components of X3 given in Proposition
1.4) p lies on. To this end, note first that (by Corollary 1.6) the genus gy of each irreducible
component I of X+ can also be recovered group-theoretically. (Indeed, .J;(I) has precisely
1291 elements.) Thus, if « € M corresponds to the node p, the irreducible components I
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of X7 containing p are precisely those that are the image of irreducible components J of
Zq such that (g7 —1)>1-n-(gr—1). O

Corollary 5.3:  Suppose that X is stable and sturdy. Let H C Hg(dm be an open orderly
subgroup. Let YI{IOQ — X'99 be the corresponding covering. Then the sets of nodes Ny,
and Nx of Yy and X, respectively, as well as the natural morphism Ny,, — Nx can be
recovered from T1%¢™ — Tlg, and H. Moreover, the set of irreducible components of
(Ya)z on which each node of Ny, lies can also be recovered from 198 — Mgios and H.

Proof: In this case, in order to obtain the morphism Ny,, — Nx it is useful to choose [
and n prime to the index of H in %™, and to choose the G,,-torsor “Y” over Yy to be
the pull-back of a G,,-torsor on Xg. The rest of the proof is straightforward. ()

Now let 1 be a node of X. Let I C X be an irreducible component of X on which u
sits. Then there is a unique (up to conjugacy) decomposition subgroup

d d
AzmgHaXm

which may be defined as follows. Let Z'°9 — X'°9 be the log scheme obtained by taking
the inverse limit of the various Yéog — X'9 corresponding to open orderly subgroups
H C T1%¢™. Choose a “node” v € Z that maps down to u € X. Here, by “node of Z,”
we mean a compatible system of nodes vy € Yy. Then Azdm C Hg(dm is the subgroup of

elements that take the node v to itself. If v sits on an irreducible component J of Z which

. ; def
lies over I, then we can also form A4 A% C T144™  hence Azd}” = A¢mN Azdm, and

Af}?] def AN Azdm. Up to conjugacy, AZ‘?}” and AZ?I are independent of all the choices

made. Now, it follows formally from Corollary 5.3 that

. . adm. A adm. Ain adm
Corollary 5.4: Given p and I as above, one can recover AJS™; AM i Al C II

entirely from T14™ — T giog .
Section 6: The Log Structure at a Node

We maintain the notation of the preceding Section. In addition to assuming that X
is stable and sturdy, let us assume that it is untangled (i.e., every node lies on two distinct
irreducible components). Let u € X (k) be a node of X. Let I, I’ be the two irreducible
components of X on which p lies. Let Z'°9 — X!°9 be the covering corresponding to the
trivial subgroup of I1%¢™. Let v be a node of Z lying over u. Let J (respectively, J') be the
irreducible component of Z that touches v and lies over I (respectively, I’). Thus, as in the
preceding Section, we have various subgroups, such as Azdm, Agdm Aadm C T19dm - Note
that (since X is untangled) elements of A%¥™ fix J and J'. Thus, A% C Agdm Agdm,
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Next, consider the natural morphism Al‘jdm C %™ — Tlg. Since u is k-rational, this
morphism is surjective. Let us denote the kernel of this morphism by AL”. Thus, we have
an exact sequence

1—>AL”—>Ade—>HS—>1

Moreover, by sorting through the definitions, it is clear that A%, A C AL”.

Next, let us consider the natural morphism A% C T14™ — Tlgio,. It is clear that the
image of this morphism is contained in the inertia subgroup Is C I1gi.,. Thus, we obtain
a natural morphism A — Is. By using the fact that the restriction of the log structure
of X9 to the generic point of I is the pull-back (to the generic point of I) of the log
structure of S'9. it is then easy to see that this morphism A — [g is an isomorphism.
Thus, we see that we obtain a natural isomorphism

In the sequel, we shall identify A¥* with 7 (1) via this isomorphism. Similarly, we have
Ain =~ Z/(1).

In order to understand these various groups better, it is helpful to think in terms of a

local model, as follows: If e > 1 is an integer, let R def kl[z,y, 1]/ (zy—t°), A def k[[t]] € R.

Let ¥ & Spec(R), T of Spec(A). Endow T with the log structure defined by the divisor
t = 0. Let N,oqge be the monoid given by taking the quotient of the free monoid on the
symbols log(x),log(y),log(t) by the relation log(z) + log(y) ~ e - log(t). Map Nyoqge — R
by letting log(?) —7, for ? = z,y,t. Endow X with the log structure associated to
Nyode — R. Thus, we obtain a morphism of log schemes X'°9 — T'9  Let us denote

by 7 : Spec(k) — T the special point of T. Moreover, there is a unique e such that the
completion of X7 at - is equal to X'o9| .. We shall call this e the order of the node p.

Let T = V(y,t) = Spec(k[[z]]); Z' = V(x,t) = Spec(k[[y]]); Xr = X xr 7. Let
U=X—-T-7T" Let us denote by I14¥™ the quotient of the fundamental group of U
which is tamely ramified over the divisors Z and Z’. Note that 119" is abelian (thus
eliminating the need to choose a base point). Indeed, this follows by noting that IT4¢™
for e > 1 injects into T14%™ for e = 1; but when e = 1, Z|JZ' is a divisor with normal
crossings, so I144™m = 7 (1) x 7/ (1). Let us denote by I12%™ the tame fundamental group
of T — 7. Thus, 139" = Z'(1). Note (for instance, by reducing to the case e = 1) that
the decomposition groups of the divisors Z and Z’ are both equal to I14¢™. Let us denote
by A7 AL C T199™ the inertia groups of the divisors Z and Z’. As above, it is easy
to see that the natural map A C T144™ — TI1%™ is an isomorphism. Thus, we have
isomorphisms A% = /4 (1); Al = 7/ (1). Observe, moreover, (for instance, by reducing to

the case e = 1) that A* AL = {1}.

22



Let & def V(z,y,t) € X. Let us denote by I129™ the tame fundamental group of Z — £.

Thus, T149m = 7 (1). Similarly, we have T1%™ = 7/ (1). Note, moreover, that we have a

natural morphism IT144™ /A < [124™ Thus, we obtain a morphism

Z'(1) = A% — Ig" JAY — 115" = Z'(1)

This morphism corresponds to multiplication by some element € € Z'. We claim that ¢ = e.
Indeed, this follows from the fact that taking roots of the function x|z on Z corresponds
to taking roots of t¢ = y~1 . x over Z' — £ (since y is invertible on Z’ — ). Thus, we see
that we have injections

Z/(1) x Z'(1) = AP x Al I%™ C T19™ x 1199 = Z/(1) x Z/(1)

Here the composite Z'(1) x Z/(1) — Z/(1) x Z'(1) is given by multiplication by e.

Now let us translate what we have learned locally back into information concerning our
original X . First of all, let us observe that H“de (respectively, A¥: A) corresponds to
ATl (respectively, A7 A7), Thus, in particular, we obtain that A7* (A7} = {1}. Next,
let us observe that A¢9™ /A may be identified with H?dm, i.e., the tame fundamental
group of I. Let us denote by AL” [I] C H‘Ifdm = A%dm /A the subgroup of elements that
fix v and act trivially on the residue field of v. That is to say, A} [I] is the inertia group
of p in H%dm. In particular, we have a natural isomorphism

0

A1) = Z/(1)

Similarly, we have an isomorphism A’P'[I'] = Z/(1). Then AIM[I] (respectively, AlM[I'])
corresponds to T129™ (respectively, T124™).

Now let us observe that, by the theory developed thus far, all the subgroups and iso-
morphisms of the above discussion may be recovered from I14™ — Tlguos, except (possibly)
the injections

p i Z(1) = AR = T 2(1) = AR s T

(or, equivalently, except (possibly) the isomorphisms Z’(1) = A, 7'(1) = AIMI').
Thus, we have the following result

Proposition 6.1:  Suppose that X is stable, sturdy, and untangled, and that u € X (k)
is a node. Then the order e of the node y may be recovered entirely from IT1%™ — T giog,
Ly, and 1),
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Next we would like to consider the issue of reconstructing the log structure of X at u
group-theoretically. Let Sffg be the log scheme whose underlying scheme is S = Spec(k),
and whose log structure is that obtained by pulling back the log structure of X°9 via y :
S — X. Thus, we have a natural structure morphism Sff’g — S99, Let Mg (respectively,
M,,) be the monoid defining the log structure of S'9 (respectively, Sff’g ). Thus, we have
k* C Mg; k* € M,,. Moreover, Mg/k* = N; M, /k* = Npoge (Where Ny, o4e is the monoid
introduced above). The structure morphism Sff’g — 5'9 defines a morphism Mg — M, 4
(which is the identity on k™), hence an inclusion N — Npo4.. Let us denote by € € Nyode
the image of e € N in Nyoqe. Let us denote by L. C Mg (respectively, L C M) the
inverse image of e € N (respectively, € € Ny, 0q4c) in Mg (respectively, M,,). Thus, we obtain
an isomorphism of k*-torsors

Cu:£6_>£e

We would like to reconstruct ¢, group-theoretically.

First, recall that we may naturally regard k* as a quotient of Z’ (1). Now it follows
from Kummer theory that

Lemma 6.2 :  There is a natural one-to-one correspondence between elements of L. and
morphisms 1) : A4 — kX whose restriction to Z'(1) x Z/'(1) = A" x AJr C A4d™ js the
composite of the morphism (e, e) : Z’(l) X 2’(1) — 2’(1) (i.e., multiplication by e on both
factors) with the natural quotient Z'(1) — k*.

Note that here, the k*-torsor structure on the set of such 1 is given by observing that the
difference between two such v is a morphism Hom/(Ilg, k™), which may be identified with
k> by means of the Frobenius element ¢ € I' = Ilg.

Similarly, we have

Lemma 6.3 : There is a natural one-to-one correspondence between elements of L.
and morphisms 1) : Tllgioy — k* whose restriction to Z'(1) = Is C Ilgios is the composite
of the morphism e- : Z'(1) — Z'(1) (i.e., multiplication by e) with the natural quotient
Z/(1) — k*.

Moreover, the correspondence induced by ¢, : L. = L. between the 9 of Lemma 6.2
and the ¢ of Lemma 6.3 is the correspondence obtained by composing [Igis — k> with

Azdm — Hade d Hslog.

We thus conclude the following

Proposition 6.4:  Suppose that X is stable, sturdy, and untangled, and that u € X (k)
is a node. Then the morphism ,, : L. = L. may be recovered entirely from T1%™ — Hgiog,
Ly, and 1),
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Section 7: The Main Result over Finite Fields

We are now ready to put everything together and prove the main result over finite
fields. The point is that the theory developed thus far in this paper will allow us to
reduce the Grothendieck conjecture for singular stable log-curves over finite fields to the
Grothendieck conjecture for smooth, affine, hyperbolic curves over finite fields (which is
already proven in [Tama]).

Let S/29 — S!9 be as in Definition 2.7. Let X9 — §!9 and (X')9 — S'9 be
stable log-curves of genus g (equipped with base-points x € X (k) and 2’ € X’(k)), such
that neither X nor X' is smooth over k. Let us assume that we are given a commutative
diagram of continuous group homomorphisms:

i
Hg{dm o Hg{d[m

! l

id
Hslog ? HSZOQ

where the vertical morphisms are the natural ones, and the horizontal morphisms are iso-
morphisms. The goal of this Section is to show that (under a certain technical assumption
on the “RT-degree”) o'l arises (up to conjugation by an element of A yi0¢) from a geometric
Slo9_isomorphism of X9 with (X')9.

We begin by proving the result under the following simplifying assumption on X and
X'

(*) X and X’ are sturdy and untangled, and their nodes are rational
over k.

By Proposition 4.1, o' induces a natural isomorphism between the sets of irreducible
components of X and X’. Let I C X be an irreducible component. Then there is a
corresponding irreducible component I’ C X’. Moreover, by Proposition 4.1, a!! necessar-
ily maps decomposition (respectively, inertia) subgroups of I14¢™ to similar subgroups of
119¢™. Thus, we may choose A$?™ C IT199™ such that o!! maps A%9™ onto A%™ C T144m.

; ; . def ;
Moreover, we also have o'I(A¥*) = A%, Thus, since H‘Ifdm = AIm /A" we get a natural

isomorphism
II . adm ~ Tadm
O{Iv . Hf = Hf/
Now as we saw at the beginning of Section 6, the natural morphism AY" — Ig is an

isomorphism. Hence, the quotient of H;Edm induced by 1% — Tlgu., is simply H%dm —
IIs. Thus, we see that a? fits into a diagram:
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I

as
adm I adm
e — Mg

l l

Mg -4 1o

Let Ay = K er(H%dm — Ilg). Since I is a smooth affine hyperbolic curve over k, we are
now in a position to apply the theory of [Tamal]. The only two consequences of the theory
of [Tama] that we will use in this paper are the following:

(1) ot induces a commutative diagram

I
I 2L
s g

of morphisms of schemes. Here the vertical morphisms are the natural
ones, and the horizontal morphisms are isomorphisms. The morphism
~vr1, however, need not be the identity.

(2) For each node p of X lying on I, the morphisms ¢, : Z'(1) — H(Ifdm
(well-defined up to conjugation by an element of Aj) of Proposition
6.1 are taken to each other by o', up to multiplication by some unit
0r € (2’ )*. Here, the automorphism induced by €; on the quotient
7 (1) — k* is equal to the automorphism of £* induced by ~;.

It follows, in particular, that ; € pZ C Q (i.e., f; is a rational number which is a power

of p). In fact, as we shall see below (Lemma 7.1), 0 is independent of I. Thus, we shall
write

degrr (') Ly, e p2cQ
and we shall refer to this number as the RT-degree of a'' on I (where “RT” stands for

“ramification-theoretic,” as opposed to another type of degree that will be discussed in
Section 9).

Lemma 7.1 :  The rational number 6; is independent of the irreducible component I.

Proof: Suppose that there is another irreducible component J of X that touches I. Let
J' C X' be the corresponding component of X’. Let us focus our attention at a node
p lying on I and J. By Corollary 5.3, there is a corresponding node /' € X'(k). Let e
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(respectively, €’) be the order of the node u (respectively, p'). Now we have a commutative
diagram:

Z/(1) x Z/(1) = Ain[1] x Airlg] S92 Zr(1) x Z(1) = Ap x Air S 701 = 1

o | |

Z/(1) x 2/(1) = A1) x Ay S iy x (1) = Ap x A Y Zia) = 1

where the vertical map in the middle is that induced by «!!, and 6; and 6; are the
morphisms obtained from the theory of [Tama] (cf., item (2) in the list given above). It
follows immediately from the commutativity of this diagram that 8; = ¢’-e~! = ;. (Thus,
we also obtain a new proof of the rationality of #;.) This completes the proof. O

Let us assume henceforth that

(t) degrr(a') =1

Thus, ay is an S-isomorphism, and the ¢, are taken to each other precisely (not just
up to some multiple) by a!l. By the theory of [Tama], this means that a; induces an
S-isomorphism I = [’ that respects nodes. We thus obtain an S-isomorphism

ax : X=X’

Thus, it remains to consider log structures. Let X — X be the normalization of X. Let
us equip X with the log structure defined by the divisor consisting of the points of X that
map to nodes of X. Thus, we obtain a log scheme X lo9 whose log structure is generically
trivial. Similarly, we have (X’)"°9. Note that ax already induces an S-isomorphism

O 10, :)zlog o ()z/)log

Now let us concentrate on a single node p € X (k) (which corresponds to p/ € X'(k)). Tt
is not difficult to see that given X'°9, in order to recover the S!°9-log scheme X'°9 in a
neighborhood of p, it suffices to know the isomorphism

Cu:Lle=Le
But by Proposition 6.4, this morphism may be recovered from 1™ — Ilgiog, plus item

(2) of the above review of the theory of [Tama] (now that we know/are assuming that all
the 0y = 1). Thus, we see that ax extends naturally to a morphism

xtog : X109 22 (X')l09
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as desired.

The next step is to check that the morphism induced by al;(’g between H%ﬁm and
194%™ agrees (up to conjugation by an element of A xios) with the original o!l. But this
follows by using a similar argument to that of [Tama]: Namely, first we observe that
it is clear from the construction of ayi., that if we start with an o' that arises from
some (3 : X9 = (X')9 then 8 = axis. Then we note that for each orderly covering
Y9 — X9 there is a corresponding orderly covering (V') — (X')!°9, together with
an isomorphism IT§4™ = T1¢4™ induced by a!l. Moreover, this isomorphism gives rise to
an isomorphism ay., that is compatible with ayi.s. It thus follows formally from the
general theory of the algebraic fundamental group that the isomorphism of IT1%™ with
Hggl,m induced by ayi.s differs from a'' by conjugation by some element n € Hg(dm. On
the other hand, since the automorphism of H‘;(dm given by conjugation by 1 must induce
the identity on Ilgios, and Ilgis clearly has trivial center, it thus follows that the image
of n in Igie, is trivial. Thus, n € Axieg, as desired.

Now let us denote by Isomgis (X9, (X')9) the set of S'°9-isomorphisms of log
schemes between X'°9 and (X’)!°9. Next, let us consider the set I somr,,, (T1gdm  T198m)
of 1som0rphlsms [198m = T144™ that preserve and induce the identity on the quotient ILguo, .
Then given o, o’ € Isomp 198m T198™), we regard o ~ o’ if and only if there exists
an 1 € Axioy such that

glog (

a(n-m-n~t) =d(m)
for all 7w € TI%™. The resulting set of equivalence classes will be denoted
GO adm adm
I'somy (TI™, IIS5™)
Here, “GO” stands for “geometrically outer.” Now observe that it is clear that inner

automorphisms induced by elements of A xi.y do not affect the RT-degree. Thus, it makes
sense to consider

ISOngiT (Hadm Hadm) g IsomgO (Hadm Hadm)

that is, the classes of isomorphisms a whose RT-degree is equal to 1.

Thus, in summary, we have proven (at least under the assumption (*)) the following
result:

Theorem 7.2:  Let S!29 — S'9 be as in Definition 2.7. Let X'°9 — S§%9 and (X')9 —
S99 be stable log-curves (equipped with base-points € X (k) and ' € X'(k)), such that
at least one of X or X' is not smooth over k. Then the natural map

ISOmslog (Xlog’ (X/)log) N IsomGORT(Hadm Hadm)
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is bijective.

Proof: It remains to deal with the case where the simplifying assumption (*) is not
satisfied. But let us note that given an arbitrary X'°9 as in the statement of the Theorem,
there is always a finite orderly covering Y'°9 — X'°9 such that Y satisfies (*). Moreover,
any admissible covering (with rational nodes) of Y will clearly still satisfy (*). Thus, it is
clear that we may take Y9 — X'9 such that the corresponding (via o!l : 138" = T194m)
(Y")led — (X')!9 is such that Y’ also satisfies (*). Then one concludes the Theorem by
descent. O

Just as in [Tamal, if Ay, is center-free, then one can rewrite Theorem 7.2 in terms
of outer automorphisms. For this, we need the following

Lemma 7.3 :  The group A x4 is center-free.

Proof: The proof is formally the same as that given in [Tamal, §1, for the case where X
is smooth over k. The only facts that one needs to check are:

p

“log Of A xiog 18 free.

(1) The pro-p-quotient A
(2) There exists an open subgroup H C A ., for which H? is nonabelian.

We begin by checking (1). First note that He?t(XE, F,) = 0. Indeed, this follows immedi-
ately from writing out the long exact sequence associated to

0—>Fp—>GaﬂGa—>0

(where “F” is the Frobenius morphism). Thus, for all finite étale coverings ¥ — X,

we also have HZ,(Y,F,) = 0. It thus follows that H*(A%,,, F,) = HQ(A’;(,pr) =

HZ (X%, Fp) = 0. (Here we use the elementary fact that the natural surjection A%,
A% is an isomorphism.) On the other hand, it is a well-known fact from group-theory
([Shatz], Chapter III, §3, Proposition 2.3) that this implies that A", is free. This com-
pletes the verification of (1). As for (2), since the smooth case is already discussed in

[Tamal, §1, we shall concentrate here on the case when X is singular. Then it suffices

—

to note the existence of an orderly covering of X9 whose dual graph has a nonabelian
fundamental group. But the existence of such a covering follows immediately from simple
combinatorial considerations. ()

If G1 and G2 are two topological groups, let us denote by Isom(Gi,G2) the set of
continuous isomorphisms G = Ga. Let us denote by Out(G1,G2) the set of equivalence
classes of I'som(G1,G3), where we consider two isomorphisms equivalent if they differ by
an inner automorphism. If G; = Gg, then we shall denote Out(G1,G2) by Out(Gy).
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If « € Isom(G1,G2), then « induces an isomorphism Out(a) : Out(G1) = Out(Gz).
Moreover, Out(«) depends only the class [a] € Out(G1,G2) defined by a.

Suppose that X!°9 and (X’)!°9 are as in Theorem 7.2. Let

pX . HSlog — Out(AXlog)

be the representation arising from the extension 1 — A yio, — %™ — g0y — 1. Note
that px is independent of the choice of base point z. Similarly, we have px/. Let us denote
by

Outp(Axlog, A(X/)log)

the set of [a] € Out(Axios, A(x7)i0) such that Out(a)opx = px/. Now note that we have
a natural map

Isomgio, (IS, TISE™) — Out p(Axio0, A (x7)o0)

Then it follows group-theoretically (cf. [Tama]) from the fact that A xi., has trivial center
that this map is a bijection. Let us denote by

Outf (Axlog, A(X/)log)

the image under this bijection of

GORT adm adm GO adm adm
Isomyp_, *" (™, 50™) € Isomyy, (IIX™™, HK0™)

(Here, the “D” stands for “degree one.”) Thus, one can rephrase Theorem 7.2 in the
following (seemingly weaker) form:

Theorem 7.4:  Let SI29 — S'9 be as in Definition 2.7. Let X'°9 — S§'°9 and (X')!9 —
S!9 be stable log-curves such that at least one of X or X' is not smooth over k. Then
the natural map

Isomslog (Xlog, (X/)log) — Outl];)(AXlog7 A(X/)log)

is bijective.
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Section 8: Characterization of Admissible Coverings

So far, we have been working with stable curves over a finite field. In this Section
and the next, we shift gears and consider stable curves over local fields. The purpose of
this Section is to show that given such a curve, one can characterize the quotient of the
fundamental group (of the generic curve) corresponding to admissible coverings in entirely
group-theoretic terms. The technique of proof is similar to that of Proposition 3.1, where
we characterized étale coverings among all admissible coverings.

Let K be a finite extension of Q,. Let K be an algebraic closure of K; let T'x def

Gal(K/K). Let K¥" C K be the maximal unramified extension of K in K; let Y CTg
be the corresponding closed subgroup. Let A C K (respectively, A*"" C K""") be the
ring of integers; k be the residue field of A; S = Spec(A). Let us endow S with the log
structure defined by the closed point. Let X9 — §!9 be a stable log-curve of genus g

which is generically smooth. Thus, Xx — Spec(K) is a smooth curve of genus g. Choose

a base-point x € X(K). Let IIx, def 71 (XK, 23) be the resulting fundamental group.

Thus, we have an exact sequence

l1—-Ax, = lx, - Tx —1
where Ay, def m1 (X%, 27). Let IIx, — II9™ be the quotient (as in Definition 2.4) of
ITx, by the intersection [| H of all the co-admissible open subgroups H C Ilx,. .

Let Yx — Xk be an abelian étale covering of degree p. Let us assume that Y is
geometrically connected over K. Now let us consider the following condition on Y — Xk

(*) Over K"“"" there is an infinite abelian étale covering Zgunr —
Xgunr = Xg @ K""" with Galois group Z, such that the interme-
diate covering corresponding to Z, — F, is Ygunr — Xgunr.

In the next few paragraphs, we would like to show that condition (*) is equivalent to the
statement that Yx — X extends to a finite abelian étale covering Y — X. Indeed, the
necessity of condition (*) follows easily from well-known facts concerning the fundamental
group of X7 = X ®4 k. Thus, it remains to show that condition (*) is sufficient.

To prove the sufficiency of (*), we will need to review certain basic facts from [FC]
concerning the p-adic Tate module of a semi-abelian scheme over S. Let Jx — Spec(K)
be the Jacobian of Xx. We shall always regard Jx as equipped with its usual principal
polarization. By [FC], Chapter I, Theorem 2.6 and Proposition 2.7, it follows that Jgx

extends uniquely to a semi-abelian scheme J — S over S. Let V; g om(Q,/Z,, J(K))
be the p-adic Tate module of Jx. Thus, V; is a free Z,-module of rank 2g, equipped
with a natural T g-action. In Chapter IIT of [FC]|, one finds a theory of degenerations of
semi-abelian varieties. According to this theory (more precisely: the equivalence “M,q;”
of Corollary 7.2 of [FC], Chapter III), there exists an abelian scheme G — S, together
with a torus T' — S, and an extension
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0T —=J—>G—0

over S, such that “roughly speaking,” .J is obtained as a rigid analytic quotient of J by an

étale sheaf P of free abelian groups of rank r def dim(T/S) on S. (Caution: Our choice

of notation differs somewhat from that of [FC].) Let V5 def Hom(Q,/Zy, J(K)) be the

p-adic Tate module of Jx. Thus, if d = dim(G/S), then V= is a free Zp-module of rank
r + 2d. Note that the étale sheaf P may also be regarded as a free abelian group of rank

r equipped with a I'k-action. Let Pz, def P ®z Z,. Then, according to Corollary 7.3 of
[FC], Chapter III, we have an exact sequence of I' x-modules:

0—=Vy—=V;— Pz, —0

Let Vg & Hom(Q,/Z,,G(K)) (respectively, Vr et Hom(Qp/Z,,T(K))) be the p-adic

Tate module of Gk (respectively, T ). Then V7 itself fits into another exact sequence of
I' x-modules:

0—=Vr = Vy—=Vae—0

Next let us consider the I'x-module Viz. Let a be the p-rank of the abelian variety

G def G ®4 k over k. Then, as is well-known, there is a free Z,-module Vgora of rank a

equipped with an unramified I'i-action such that we have exact sequences of I' x-modules:

0— V& — Vo — Vgora — 0

and

0— Viora(l) = V& — Vgee — 0

Here, the “(1)” is a Tate twist, and by “unramified action” we mean that I'Y?*" acts trivially.
Thus, Vgss is the “supersingular part” of the representation V. Let us denote by Vet
the quotient of V; by KGT(Vj — Vgora) C V5 C Vy. Thus, Vyer is a free Zy-module of
rank r + a, equipped with a natural unramified I'g-action. Let Vjyme C V-C Wy be the
inverse image of Vi¥,,.(1) (€ V) under the projection V5 — V. Note that the submodule
Vyme C V;y is dual to the quotient V; — Vjetr under the bilinear form on Vj arising from
the canonical polarization of J.

Now we would like to take a closer look at the I'g-module Vgss. First, recall that the
['x-module Vi is crystalline. This fact is well-known from the general theory of Galois
representations arising from p-adic étale cohomology groups of varieties (see, e.g., [FC],
Chapter VI, §6, for a brief review of this theory, as well as a list of further references). Let
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Ky C K be the maximal unramified extension of Q, in K. Then Vg is (say, covariantly)
“associated” to a filtered module with Frobenius action (M, F" (M), ®ys), where M is a
Ky-vector space, ®ps : M — M is a semilinear automorphism, and F"(M) is a filtration
of M ®k, K. It then follows from the above exact sequences that Vg:s is also crystalline,
and is associated to a filtered module with Frobenius action (M?®*, F"(M*®), ®prss ) which
is a subquotient of (M, F"(M),®pr). Moreover, since Vgss was constructed as the “su-
persingular part of V,” it follows that the Frobenius action ®,sss on M?*? is topologically
nilpotent. Now we have the following crucial

Lemma 8.1 : Any '} -equivariant Z,-linear morphism 1) : Vi — Zy (where Z,, is
equipped with the trivial I'{/*"-action) factors through the quotient Vs — Vgora.

Proof: First, note that since T is a torus, and K“"" contains only finitely many p*"* power
roots of unity, the restriction of ¢ to Vi must be zero. Thus, v factors through V. Denote
the resulting morphism Vi — Z, by ¢’. By the same argument, the restriction of ¢’ to
Vgard(l) must be zero. Thus, we obtain a I'}/*"-equivariant morphism ¢gss : Vgss — Z,.
But since V== is crystalline, it follows from the basic theory of crystalline representations
that ¢ gss defines a Frobenius-equivariant, K“""-linear morphism ¥ psss : M*° @, K*"" —
K" (Here, K""" is equipped with the trivial Frobenius action.) On the other hand, it
follows from the topological nilpotence of ®p;ss that 1psss must be zero. Thus, Ygss is
also zero. This completes the proof. ()

Now let us return to the abelian covering Yx — Xg of degree p discussed above.
Suppose that this covering satisfies condition (*). Then there exists a covering Zgunr —
Xgunr as in (*). Moreover, since V; = Hom(Ax ., Zy(1)), it follows that Zgunr — Xgunr
defines a Z,-linear morphism « : Z,(1) — V; which is I'*"-equivariant. By taking the
dual to x (and using the fact that the polarization of J gives an isomorphism of V; with
its Cartier dual), we obtain a I'}/'""-equivariant morphism " : V; — Z,. Thus, by Lemma
8.1, it follows that k" factors through Vje:. In particular, x factors through Vjym:. On the
other hand, it is clear that Z,-coverings arising from morphisms Z, (1) — V;m: extend to
étale coverings of X g4unr. Thus, in particular, it follows that Yx — X extends to a finite
étale covering Y — X. Thus, we have proven the following result:

Lemma 8.2 : Let Yy — Xg be an abelian étale covering of degree p. Let us assume
that Yi is geometrically connected over K. Then Yy — Xk extends to a finite étale
covering Y — X if and only if Yk — X satisfies condition (*) above.

Next, we would like to consider more general coverings Y — Xx. We begin with the
following

Lemma 8.3 : Letvyg : Yx — Xk be a finite étale covering such that Y is geometrically
connected over K. Suppose, moreover, that Y arises from a stable curve Y — S over S.
Then Y extends to a proper surjective morphism v : Y — X.
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Proof: Note that if v ® 4 K = vk, then v will automatically be proper and domi-
nant, hence surjective. Thus, it suffices to show the existence of such a 1. Let us first
show the existence of such a 1 under the additional assumption that Xy is sturdy. Now
it follows from the general theory of stable curves that there exists a semi-stable curve
Y’ — S equipped with a birational (blow-up) morphism Y’ — Y such that Y’ is regu-
lar. Moreover, it follows from the general theory of “elimination of indeterminacy” for
regular two-dimensional schemes ([Lipman], Lemma 3.1) that the rational map from Y’ to
X defined by ¢k becomes a morphism over some Y, where Y is obtained from Y’ by
blowing up points. Denote the resulting morphism by " : Y” — X. On the other hand,
for E C Y/ CY" such that E = P,1€, it follows from the sturdiness assumption on X that
V' | g is constant. It thus follows that ¢ factors through Y, as desired.

Now let us prove the result in general (without the assumption that X} is sturdy).
First, observe that by descent, it suffices to prove the result after replacing K by a finite
extension of K. Thus, we may assume that there exists a Galois admissible covering
Ox : X' — X (over S) such that X, is sturdy. Pulling back (fx)x to Y, one sees that
one obtains a finite étale covering Y}, — Yx which extends to a Galois multi-admissible
covering Ay : Y’ — Y. On the other hand, if we pull-back 1)k to X', we obtain a morphism
Yy Yj. — XJj. Moreover, since X, is sturdy, it follows from the first paragraph of this
proof that ¢} extends to a morphism ¢’ : Y’ — X’. Thus, by composing ¢’ with fx, we
obtain a morphism ¢ : Y’ — X whose restriction to Y}, is given by taking the composing
of (0y)k : Yj — Yk with ¥x. Now, let us note that since fy : Y’ — Y is an admissible
covering, it is, in particular, finite. Thus, if G is the Galois group of Y}, over Y, it follows
(from Zariski’s main theorem) that Oy is obtained from Oy by taking G-invariants.
Hence, ¢ : Y — X factors through a morphism Y — X which extends ¢k, as desired. ()

Remark: As pointed out by the referee, one can also prove this Lemma (without reducing
to the sturdy case) by considering the number of points at which a (—1)-curve in Y
(notation of the above proof) intersects other irreducible components of the special fiber
of Y”'. The author finds the proof involving sturdiness to be more transparent, but this is
a matter of taste.

Let ¥k : Yk — Xk be a finite Galois étale covering (with Galois group GG) such that
Yk is geometrically connected over K, and Yx has a stable extension ¥ — S over S. Let
us also assume that ¢ satisfies the following condition:

(t) Let H C G be any subgroup with H = Z/pZ, and let Yx — Zi be
the subcovering corresponding to H. Then Zk has a stable extension
Z — S over S, and, moreover, Yx — Zk extends to a finite étale
covering Y — Z over S.

Let p € Y be a height one prime arising from an irreducible component of the special
fiber Y3,. Then we claim that the inertia subgroup I, C G is trivial. (Here, by the inertia
subgroup, we mean the subgroup of elements of G that fix p and act trivially on k(p).)
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Indeed, first note that since Y is smooth over S at g, there cannot be any tame ramification,
so I, must be a p-group. If I, is nontrivial, then it contains a subgroup H C I, such
that H = Z/pZ. But then the statement that H acts trivially on k(p) clearly contradicts
condition (). Thus, I, must be trivial, as claimed.

Now let p € X be a height one prime arising from an irreducible component of the
special fiber Xj. It follows from the preceding paragraph that @ is unramified in K(Y)
(the function field of Y'). Thus, if we let Y’ be the normalization of X in Y, it follows
that Y/ — X is finite over all of X, and étale over the complement of the nodes of X (by
purity). Then it follows by the same argument as that used in the proof of Lemma 3.12
of [Mzk] that Y/ — X must be an admissible covering. In particular, Y’ is a stable curve
over S, so Y = Y’. Thus, it follows from Lemma 8.2 and the above discussion that we
have proven the following:

Proposition 8.4: The admissible quotient Iy, — %™ can be recovered entirely
group-theoretically from Ilx, — I'k.

Proof: Indeed, clearly (by replacing K by a finite, tamely ramified extension of K) it
suffices to show that given an open normal subgroup H C Ilx, that surjects onto I'k, the
issue of whether or not the resulting covering Yx — Xk is pre-admissible can be settled
group-theoretically. But, by the above discussion, Yx — X is pre-admissible if and only
if Y and Xk admit stable extensions over S (which is well-known, by the criterion of
Serre-Tate, to be a group-theoretic condition), and, moreover, (1) is satisfied. On the other
hand, by Lemma 8.2, (1) is also a group-theoretic condition. This completes the proof. ()

Section 9: Consequences for Curves over Local Fields

We retain the notation of the preceding Section. Thus, in particular, we have a
stable log-curve X9 — §%9  Let K., C K be the maximal tamely ramified extension

of K; let T/ Lt Gal(Ko/K). Thus, we have a natural surjection 'y — T We
saw in Proposition 8.4 that one can recover the admissible quotient Iy, — I1%™ (hence
also the surjection 114%™ — T'%"") group-theoretically from Iy, — I'x. Suppose that

(X"l — §l°9 is also a stable log-curve over S'°9. Let us denote (as in Theorem 7.2) by

Isomlgg(HXK,HX}()

the set of equivalence classes of isomorphisms IIx, — II X7 that are compatible with the
surjections to I'x, modulo inner automorphisms arising from elements of the geometric
fundamental group Ax, C Ilx, . Finally, let us denote by s'°9 the special point Spec(k) C
S equipped with the log structure pulled back from S'9. We would like to use Proposition
8.4 and Theorem 7.2 to obtain information on the special fiber of X'°9, but before we can
do this, we need to clear up some technical issues concerning the notion of “degree.”
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Thus, suppose that we are given an isomorphism « : Ilx, — Ily, over I'x. By

Proposition 8.4, this isomorphism induces an isomorphism %™ : T1%™ — TI%™ over

I4i00. Let us denote the RT-degree of a®?™ (as discussed in Section 7) by drr. We would
like to show that in this case (i.e., when a®¥™ arises from «), dgr is automatically equal
to 1. In order to do this, we will have to look at several other notions of “degree” and
show that they all coincide. From this, it will follow that drr = 1.

First, let us consider the p-adic fundamental class of X

77X,p € HQ(Axxv Zp(l))

(i.e., the first Chern class of a line bundle of degree one on X7). We also have the [-adic
fundamental class of Xk:

nx. € H*(Ax,, Zi(1))

for primes [ different from p. Also, we have similar classes nx- , and nx/; for X’. Let us
denote by

d, € Z,” (respectively, d; € Z;™)

the unique unit such that nx, (respectively, nx ;) is taken to d, - nx/, (respectively,
d; - nmx+;). Now we propose to prove that

dp =drr =d; € Q

Since drr € p%, and d, € Z,”, it will follow immediately that dgp = 1.

Note that from the point of view of showing d, = drr = d;, we may always replace
Xk by some finite étale covering of X, since we know how the fundamental class behaves
with respect to coverings (namely, it simply gets multiplied by the degree of the covering).
We shall see below in the proof of Theorem 9.2 that by replacing Xx by such a covering,
we may assume that Xy is singular, and, moreover, that its graph is not a tree. We shall
assume this until the end of the following proof and statement of Lemma 9.1.

Let us first consider the [-adic theory. Let Hz be the first singular cohomology group
of the dual graph of X7. (Recall that the dual graph is the graph whose vertices (respec-

tively, edges) are the irreducible components (respectively, nodes) of X7..) Note that Hz is

equipped with a natural Gal(k/k)-action, hence a natural I' x-action. Let Hg, Y Hp227.

Now in Section 8, we considered the p-adic Tate module of Jg, but since the theory of
[FC] applies to the l-adic Tate modules as well, we can define similar exact sequences to

those discussed in Section 8 in the [-adic case. Thus, we let V} be the [-adic Tate module

def

of Jx. Moreover, we obtain a I'x-equivariant quotient V} — Pz, = P ®z Z;, as well
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as a submodule V. C V}. Here, we shall not regard Pz, as the tensor product of some
Z-module P with Z;, but rather solely in its capacity as a quotient of V}. By the theory
of [FC], Chapter III, it follows that as I'x-modules, we have a natural isomorphism

Cl : HZL(l) = Vll“

We shall identify these two modules via (;. This identification is justified by the following
observation: From our theory of irreducible components and nodes (Sections 1 and 5), it
follows that a (or, more precisely, a®¥™) induces a natural isomorphism ay, : Hz = H),
(where H/, is the object obtained from X’ that corresponds to Hz). Moreover, if we use
primes to denote objects obtained from X’ that correspond to various objects obtained
from X, then we have a commutative diagram

9]
—

sz(l) Vil“
J/OZHZ®ZZ(1) l
Hy (1) <5 (Vb

where the vertical arrows are those naturally induced by «. It is the commutativity of this
diagram that justifies the identification (based on (;) proposed above.

Now we have an exact sequence 0 — V} — V} — Pz, — 0 (analogous to the p-

adic version of this exact sequence which was reviewed in Section 8). Clearly, it may
be recovered group-theoretically from Ilx, — I'x. In particular, Pz, may be recovered
group-theoretically from IIx, — I'x. Next recall from the theory of [FC|, Chapter III,
that there is a Z-bilinear pairing B : Hz x Homz(P,Z) — K* /A* = Z which induces an
injection of modules Hz — P, which becomes an isomorphism over Q. By Corollary 7.3
of [FC], Chapter III, by considering the various extension classes involved and applying
Kummer theory, the pairing

B Y B 7 : Hy x Py, — 27

may be recovered from the extension 0 — V§ — V} — Pz, — 0. This pairing determines

an injection Hz, — Pgz,, which becomes an isomorphism over Q,;. Thus, we may recover
(group-theoretically from ITx, — I'x) the injection Hz — Pgz,.

Now, let us note that V! = Hom(Ax,,Z(1)) = H},(Ax,,Z;(1)). Thus, to summa-
rize, we have an injection

HZZ (1) - He}t(AXK7 Zl(l))

as well as a surjection (obtained by using the isomorphism Hq, = Pq, derived above from

B)
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Helt(Axkv Ql) - HQl (_1)

Now, by using the cup product operation in group cohomology, we obtain

HQL ®Q, HQL - He?t(Axxv Ql(l))

Composing this with the natural inclusion Hq ® Hq — Hq, ®q, Hq,, we thus obtain

JUR HQ (%9 HQ - He?t(AXKa Ql(l))

Moreover, it follows from the theory of [FC], Chapter III, that there exists a nondegen-
erate bilinear form < —, — >: Hq x Hq — Q such that for all hi,he € Hq, we have
pi(hi, he) =< hi,ha > nx . Here, the bilinear form < —, — > is independent of I.

Let us denote analogous objects associated to X’ by means of primes. Thus, it follows
immediately that we have a commutative diagram

Nx,i

HQ ®HQ i) He?t(Axkal(]-)) — Zl

JO‘HQ@)O‘HQ ngt(a) ldl
/

M
Hy® Hy —5 HZ(Ax,,Qu(l) < Z

whose vertical morphisms are those naturally induced by «. In particular, we obtain that

(up to identifying Hq with Hg via apg) di- < —, — >=< —, — >'. Moreover, the l-adic
theory of the last few paragraphs goes through entirely without change in the p-adic case,
as well. Thus, we obtain d,- < —, — >=< —, — >’. In particular, (since the graph of Xj,

is not a tree, Hz # 0, so) d, = d; € Q for every prime [ different from p. Since d; € Z;*
and d, € Z,,”, we thus obtain that d, = d; = £1.

On the other hand, the relationship between d; and drr can be established as follows.
First note that, as we saw in Section 5, there is a natural combinatorial (perfect) duality
(unrelated to the duality defined by the form B) between Hz, and Pgz,. (Indeed, in Section
5, the discussion concerning “L"™ and “Ky” shows that Pz, is the first homology group
of the dual graph of X7 (with Z;-coeflicients), whereas Hz, is — by definition — the first
cohomology group of the dual graph of Xi (with Zj-coefficients).) Let us denote this
duality by Dj°™ : Hz, ®z, Pz, — Z;. Moreover, relative to the natural combinatorial
isomorphisms Hz, = Hy and Pz, = P, (obtained from considering the isomorphisms
between the graphs of X+ and X% induced by a®™), we have D{™ = (Dg°™) (since

“everything is combinatorial”). Thus, we shall identify Hz,, Pz, and D{°"™ with their
primed counterparts in what follows.

Now recall the natural inclusion Hz, (1) € H'(Ax,,Z;(1)), and the natural surjection
HY(Ax,,Z;) — Pgz,(—1). Using the cup product in group cohomology, we thus obtain a

38



pairing Hz, (1) ® Pz,(—1) = Hz, ® Pz, — Z; - nx,. It is tautological that this pairing is
simply Dy (—,—)-nx,. On the other hand, by recalling the definition of drr (in terms of
inertia groups) and the fact that the quotient V} — Pz, pertains to the inertia, it follows
immediately that we have a commutative diagram

Hz, (1) © Pr,(-1) % HZ(Axe, Q1) &z
lidel(X)(dRT-idpzl) let(a) ldz

Hz, (1)@ Pz, (=1) —= HZ(Ax,, Q1) < 2z

It thus follows that d; = drp. Since dgrr is positive, we thus obtain the following

Lemma 9.1 : We have d, = d; = drr = 1. In particular, nx , (respectively, nx,) is
taken to nx , (respectively, nx ;) by .

We are now ready to prove the following result:

Theorem 9.2:  Let K be a finite extension of Q,; let A C K be its ring of integers;
and let S'°9 be Spec(A) equipped with the log structure defined by the closed point. Let
X'og — Slog and (X')!°9 — S99 be stable log-curves (equipped with base-points z € X (K)
and x' € X'(K)). Then there exists a morphism

& : TsomP2 (Ix o Txs ) — Isomgios (X7, (X)09)
that makes the following diagram commute

IsomEQ (M, Mxr ) — Isom%% (T14dm™ T198m)

B Ji

Lsomes (X, (X)) —  Isom§Q, (L%, 1154m)

(where the horizontal morphisms are the natural ones).

Proof: This Theorem follows immediately from Theorem 7.2 (together with Proposition
8.4 and Lemma 9.1) if it is the case that at least one of Xy, or X, is not smooth over k.
Thus, it remains to consider the case when both Xj; and X, are smooth over k. In this
case, let us (after possibly replacing K by a finite extension of K, which won’t affect the
final result) assume that there exists a finite, abelian, étale covering Yx — Xk of degree p
such that Yx extends to a stable curve over S. Let GG be the Galois group of Yx over X
By Lemma 8.3, Y — Xk extends to a morphism Y — X. Moreover, by the review of the
structure of V; given in Section 8, it is easy to see that one can always choose Y — Xg
so that Y — X is not étale.
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Then I claim that Yy is singular. Indeed, suppose that Yj is smooth over k. Let
© € X be the prime defined by the special fiber. Then g must be ramified in K(Y) (the
function field of V'), for if it were not ramified, it is easy to see that ¥ — X would be
étale. On the other hand, since X and Y are both smooth over A, the statement that @ is
ramified in K(Y) means that K(Y%) is an inseparable extension of K (X}) (of degree p).
But this means that the genus of Y; (and hence of Yx ) is the same as that of Xj;. But
since Y — X[ is étale of degree p, this is absurd. This completes the proof of the claim.

Now suppose that we are given an isomorphism ¢r : IlIx, — 1I X/ that respects the
surjections to I'x. Then the covering Yx — Xg corresponds, via ¢, to some covering
Y — XJ. Now we can apply the part of the Theorem that has already been established
to Y9 and (Y”)!°9. We thus obtain an isomorphism ¢y : ¥, 2 (Y")!9 (over s'°9). Now
it is easy to see that the irreducible component C' of Yklog that maps finitely to X ,l:g can be

characterized group-theoretically as the unique component such that abelian étale coverings
of X,l:g of degree [ (where [ is prime to p) pull back to nontrivial coverings of C'. Moreover,

note that nonsplit admissible coverings of X,iog pull-back to nonsplit admissible coverings

of Yklog . Thus, one sees that ¢y induces a unique isomorphism ¢x : X ,iog ~ (X' );Og such
that the morphism induced by ¢x on I1%%™’s is compatible with the morphism induced on
[1%4m°s by ¢r1. This completes the proof of the Theorem. ()

Once Theorem 9.2 is in hand, the next natural step is to try to show that the isomor-
phism of X,iog ~ (X’ )log obtained from some ¢ : Ilx, — Iy lifts to an isomorphism

Xlog = (X")l9 gyer S°9. Unfortunately, we do not succeed in doing this in general. The
problem is as follows: Let Gx be the p-divisible group over K defined by the I'x-module
Hom(Qp/Zyp,Vy). Then the exact sequence 0 — V5 — V; — P ® (Qp/Zy) — 0 of I'k
modules gives rise to an exact sequence of p-divisible groups over K:

0—>§K—>QK—>Q§—>0

Moreover, it follows from the theory of [FC], Chapter III, that Gx and GE % extend, respec-
tively, to p-divisible groups G and GF over S. (Here, G is the p-divisible group obtained

from the semi-abelian scheme .J. ) For readers used to this language, we note that it also
follows from the theory of [FC|, Chapter III, that Gk extends to a log p-divisible group

Glo9 over §'°9. Finally, we also have primed objects G, (GF)', ete. arising from (X')"9.

Now let us observe that any isomorphism qbn xp, — Hx that respects the surjec-
tions to 'k defines an isomorphism gk + Gx = G of p-divisible groups over K. Note

that ¢g, maps g K into (] %, hence induces an isomorphism gz5~ QK = Q %- Moreover,

it follows from a theorem of Tate ([Tate]) that q5~ extends umquely to an isomorphism

~ E]V o E]V’ . If we tensor this isomorphism with k, we thus obtain an isomorphism
g p

¢§k = ,gv;/.C
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On the other hand, note that ka is the p-divisible group associated to jk Moreover,
since Jk is the identity component of the Picard scheme of Xj, the isomorphism ¢x :
Xlog = (X’)log thus induces an isomorphism Pic?(X;) = Jj, = Pic®(X}) = J., hence an

1som0rphlsm

Ppico(x) : Gr = Gy

Then the following fundamental question arises:
Question 9.3: Is ¢§k equal to ¢pico(x)”

Remark: If one can prove that the answer to Question 9.3 is affirmative, then it follows
formally from the techniques discussed in this paper that one can prove a version of the
Grothendieck Conjecture for hyperbolic curves over local fields. Unfortunately, however,
because we are only able to settle Question 9.3 in the affirmative under the additional
assumption that the abelian variety Gy is ordinary (see Lemma 9.4 below), we are only
able to prove (in the context of this paper) a relatively weak version of the Grothendieck
Conjecture for hyperbolic curves over local fields (see Theorem 9.7 below). In fact, a very
strong local version of the Grothendieck Conjecture is proven in [Mzk2|. The existence of
such a local result implies a posteriori that the answer to Question 9.3 is always affirmative.
Nevertheless, it is still of interest to what extent Question 9.3 can be settled within the
context of the present paper, and so we proceed to do this below.

Now we would like to settle Question 9.3 in the affirmative under the assumption that
G is an ordinary abelian variety.

Lemma 9.4 :  Suppose that in the exact sequence of groups 0 — T — J—G =0
associated to the Jacobian J of X, the abelian variety Gy is ordinary. Then we have

G, = PPico(x)-
Proof: Indeed, in this case, the p-divisible group Gr admits a canonical splitting

Gr =G & Git

into multiplicative and étale parts. Since both qz5~ and ¢p;.0(x) clearly respect this split-

ting, it suffices to show that they agree on each of the direct summands. Note, moreover,
that Q’,Tt lifts naturally to a multiplicative p-divisible group Gmt C G. Also, the submod-

ule of V5 C V; defined by (]K is simply Vjym:. But Vyme C Vy = H' (Ax,,Z,(1)) is the
portion of H'(Ax,,Z,(1)) that arises from étale coverings of X (or, equivalently, Xj).
Thus, the fact that gbak = Qpico(x) ON gt follows from the commutativity of the diagram
in the statement of Theorem 9.2.
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Let G be the p-divisible group over S arising from the abelian scheme G' — S. Thus,
we have a surjection G — G. Moreover, ¢fgvk and ¢p;co(x) induce isomorphisms Gy = Gj..
Let us refer to an isomorphism of an object with its Cartier as dual as a polarization
of the object. Now observe that we have two polarizations of G, one arising from the
polarization of V, and the other arising from regarding J as Pic’(Xy). By the general
theory of semi-abelian schemes (as discussed in [FC]), it follows that these polarizations
of Gy coincide. Moreover, by Lemma 9.1, ¢§K is compatible with the first of the two
(coinciding) polarizations of Gy, while, by definition, ¢ p;co(x) is compatible with the second
of the two (coinciding) polarizations of Gy. In particular, the fact that ¢§k = @pico(x) ON

QNITt implies that ¢5 = ¢pin(x) on é;gt, hence on all of Gx. This completes the proof of
the Lemma. ()

Now let us suppose that we are in a situation where ¢§k = ¢pico(x)- Thus, it follows
that we have an isomorphism ¢L =N/ ;. such that the resulting isomorphism on p-

divisible groups lifts to an isomorphism ¢§ : G =~ G over S. By “Grothendieck-Messing
theory” (see, e.g., [FC], Chapter I, §3, for a review), it thus follows that ¢ﬂ extends to a

unique isomorphism ¢ : J = J' compatible with ¢§. Moreover, one checks easily that the
rest of the “semi-abelian degeneration data” for J (as in [FC], Chapter 111, §2) is determined
by the extension 0 — V5 — V; — Pz, — 0 (and its [-adic counterparts, for [ # p), as well
as other data that we have already seen to be group-theoretically characterizable. Thus,
we conclude (by the natural categorical equivalences of [FC], Chapter III, Corollary 7.2)
that we have an isomorphism

by J= T

which is uniquely determined by the condition that it is compatible with ¢g,. Moreover,
¢ is compatible (by Lemma 9.1) with the canonical polarizations on J and J’. Thus, by
Torelli’s theorem ([Milne|, Theorem 12.1), we conclude that there is an isomorphism

P X =2X'

such that the isomorphism induced by v on Jacobians is +¢ ;. Note that ¢ always extends
to a unique log-isomorphism !9 : X9 = (X")log,

Definition 9.5: Let us call X ordinary if Gy, is an ordinary abelian variety. Let us
call X equi-hyperelliptic if either (i) Xk is hyperelliptic; or (i) X ,iog does not admit an
sl°9_automorphism that induces —1 on Jj.

Note that if p is odd, then (ii) is equivalent to the condition that X ,l:g not arise as a
logarithmic degeneration of a smooth hyperelliptic curve. (Here, by “logarithmic degener-
ation,” we mean that it arises as the special fiber of some generically smooth, generically
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hyperelliptic log-curve over a trait equipped with the log structure defined by the special
point.) Indeed, that (ii) implies this condition is clear. On the other hand, suppose that
this condition is satisfied, but that there exists an automorphism o« of X ,l:g that induces
—1 on Ji. Thus, a? = id. But then it is easy to see that by forming the quotient of X ,lcog by
the group < 1, >, we can exhibit X,iog (up to adding some more marked points to X ,lcog
and modifying the log structure accordingly) as an admissible double covering of a stable
log-curve curve of genus 0. In particular, X,l:g will then be a logarithmic degeneration of
a smooth hyperelliptic curve, as desired.

Moreover, we have the following

Lemma 9.6 : If X is equi-hyperelliptic, then we can choose 1) to be compatible with
G-

Proof: Indeed, this is clear in case (i) (of the definition of “equi-hyperelliptic”) since
then the hyperelliptic involution of X (which induces —1 on the Jacobian) extends to an
automorphism of X, so we can always adjust ¢ accordingly. On the other hand, suppose
that we are in case (ii), and that v is compatible with —¢ ;. Then v differs from the
isomorphism ¢y : X,iog ~ (X' )ifg by an automorphism « of X ,iog that induces —1 on Jy,
thus violating the assumption that X is equi-hyperelliptic. This completes the proof. ()

If X,iog does not satisfy condition (ii) of Definition 9.5, let o be the (necessarily
unique) offending automorphism. Let ¢ € T som?ﬁn (I1™  T198™) be the (equivalence class
K

of) isomorphism(s) induced by «. Note that by Theorem 7.2, if [ SOmr‘i(m(Hade, 194m) is

nonempty, then X,iog has an offending automorphism if and only if (X’ );Og does. Now let
us define

GOH (yradm adm
Isompin: (TI§™, IE™)

to be the set of equivalence classes of elements of Isom&9, (I144™, TI9&™), where two classes
K

of isomorphisms T143™ =2 T194"™ are considered equivalent

(1) if they are equal or differ at most by composition with ¢ (when « exists);

(2) if they are equal (when a does not exist).

It is easy to show that this equivalence relation is well-defined, and compatible with the
equivalence relation used to define Isom&© from Isom.

Now we are ready to state the strongest version of the Grothendieck Conjecture that
we are able to prove (in the context of the present paper) in the local case.
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Theorem 9.7:  Let K be a finite extension of Q); let A C K be its ring of integers;
and let S'9 be Spec(A) equipped with the log structure defined by the closed point. Let
Xlog — §log and (X')!9 — S99 be stable log-curves (equipped with base-points x € X (K)
and 2’ € X'(K)). Suppose that at least one of X and X' is ordinary. Then there exists a
(not necessarily unique) morphism

&s : Isomg (T, Mxr ) — Isomgos (X7, (X')1%9)
that makes the following diagram commute

TsomE9 (Mx,, Iy, ) — Isomlggn (T1gdm T19¢m)

Jes l

Tsomsios (X199, (X')1%9)  — Isom{QF (1™, TIgg™)

(where the morphisms other than g are the natural ones).

Moreover, if either X or X' is equi-hyperelliptic, then one can choose £s uniquely such
that the above diagram commutes when the projection on the right is replaced by the

identity on IsomGS), (I15¢™ , T158™).
K

Finally, just as we derived Theorem 7.4 from Theorem 7.2, we have the following
“outer automorphism version” of Theorem 9.7: First, let us denote by

px : 'k — Out(Ax,)

the representation derived from the extension 1 — Ax, — Ilx, — I'x — 1. Then we
have the following

Theorem 9.8:  Let K be a finite extension of Q,; let A C K be its ring of integers;
and let S'°9 be Spec(A) equipped with the log structure defined by the closed point. Let
Xlog — §log be an ordinary stable log-curve of genus g. Then the isomorphism class of
X9 js completely determined by the isomorphism class of the representation

PX : FK - Out(AXK)

Remark: Note that Theorem 9.8 shows that ordinary hyperbolic curves over local fields
behave quite differently from ordinary abelian varieties over local fields. Indeed, given an
ordinary elliptic curve Ej, — Spec(k), it is easy to see (using the Serre-Tate theory of
liftings of ordinary abelian varieties) that there exist many mutually nonisogenous liftings
E — Spec(A) (where A = W(k)) of Ej to A, for which the representations
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pE Uk — Out(m (Eg)) = Autg(m (Ex))

are isomorphic.
Section 10: The Main Result over Number Fields

In this Section, we prove the Grothendieck Conjecture for closed hyperbolic curves
over number fields. The only result from Section 9 (the local theory) that we will use is
Theorem 9.2; the rest of Section 9 is unnecessary. We will concentrate here on the closed
case, since the open case has already been proven in [Tama].

Let K be a finite extension of Q. Choose an algebraic closure K of K, and write 'y
for Gal(K /K). Let Xxg — Spec(K) be a smooth hyperbolic (i.e., of genus > 2) curve. (By

this, we shall always mean that X is geometrically connected over K.) Suppose that we

are given a base-point x € X (K). Let IIx, et T (XK, 75); Axy et 71 (X%, 23). Thus,

we have a natural exact sequence

l1—-Ax, = lx, - Tx —1

Then we have the following result

Theorem 10.1:  Let K be a finite extension of Q. Let Xx — Spec(K) and X} —
Spec(K) be smooth hyperbolic curves over K, equipped with base-points x € X (K) and
' € X'(K)). Then the natural map

Isomp( Xk, Xx) — Isomlgg(HXK,HX}{)
is bijective.

Proof: Pick an isomorphism «a : IIx, = 1II X7 compatible with the surjections to I'r. Let
A be a localization of the ring of integers of K over which X and X} extend to smooth
curves X — S, X' — § (where S = Spec(A)). Let I — S be the scheme Isomg (X, X’) of
isomorphisms of X with X’ over S. It is well-known that I is finite and unramified over
S. By localizing A further, we may assume that I is étale over S. Fix a prime number
l. By localizing A further, we may assume that [ € A*. Let p be a finite prime of A;
let A, be the completion of A at p. By base-changing to A, and applying Theorem 9.2,
we conclude that there exists a unique 8 € I(A,) such that the isomorphism defined by
( induces the same isomorphism as « on the first /[-adic cohomology groups of X and
X'. Note that 3 is, in fact, defined over some finite Galois extension L of K. Denote the
resulting point of I(L) by . To see that v descends to K, it suffices to note that ~ is
the unique point of I(L) that induces the right isomorphism on the H!(—,Z;)’s. Thus, v
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descends to K. Thus, we obtain a K-isomorphism 1 : X = X corresponding to . To
see that the isomorphism IIx, = ITy induced by v coincides with the original v (up to
an inner automorphism induced by an element of Ax, ), we apply the same argument as
that given in [Tama] or the discussion preceding Theorem 7.2. (Note that here, we also
use the well-known fact that I'x has trivial center.) O

Now, as usual, we denote by

px : g — Out(Ax,)

the representation derived from the extension 1 — Ax, — IIx, — I'x — 1. Just as in
the discussion preceding Theorem 7.4, we may form Out,(Ax,,A X}(). Then we have the
following

Theorem 10.2:  Let K be a finite extension of Q. Let Xx — Spec(K) and X} —
Spec(K) be smooth hyperbolic curves over K. Then the natural map

IsomK(XK,X}() — Outp(AXK,AX}()

is bijective.
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