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Section 0: Introduction

In [Tama], a proof of the Grothendieck Conjecture (reviewed below) was given for
smooth affine hyperbolic curves over finite fields (and over number fields). The purpose
of this paper is to show how one can derive the Grothendieck Conjecture for arbitrary
(i.e., not necessarily affine) smooth hyperbolic curves over number fields from the results
of [Tama] for affine hyperbolic curves over finite fields.

We obtain three types of results: one over number fields, one over finite fields, and
one over local fields. We remark here that when this paper was first written (October
1995), Theorems A and C below were the strongest known results of their respective kinds.
Since then, the author wrote [Mzk2] (November 1995), which gives rise to much stronger
results than Theorems A or C of the present paper. Moreover, the proofs of [Mzk2] are
completely different from (and, in particular, do not rely on) the proofs of the present
paper. Nevertheless, it seems to the author that the present paper still has some marginal
interest, partly because most of the present paper is devoted to the proof of Theorem B
below (which is not implied by any result of [Mzk2]), and partly because it is in some sense
of interest to see how Theorems A or C can be derived within the context of the theory of
[Tama].

Our main result over number fields (Theorem 10.2 in the text) is as follows:

Theorem A: Let K be a finite extension of Q; let K be an algebraic closure of K. Let
XK → Spec(K) and X ′

K → Spec(K) be smooth, geometrically connected, proper curves
over K, of genus ≥ 2. Let ΔXK (respectively, ΔX ′

K
) be the geometric fundamental group

of XK (respectively, X ′
K). Then the natural map

IsomK(XK ,X ′
K)→ Outρ(ΔXK ,ΔX ′

K
)

is bijective. Here, “Outρ” refers to outer isomorphisms that respect the natural outer
representations of Gal(K/K) on ΔXK and ΔX ′

K
.

The statement of this Theorem is commonly referred to as “the Grothendieck Conjecture.”
In [Tama], a theorem similar to Theorem A, except that X is replaced by a hyperbolic
affine curve, is proven. It is a simple exercise to derive the affine case from the proper
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case. On the other hand, to derive the proper case from the affine case is by no means
straightforward; in this paper, we derive the proper case over number fields from the affine
case over finite fields.

In fact, to be more precise, we shall derive the proper case over number fields from
a certain “logarithmic Grothendieck Conjecture” for singular (proper) stable curves over
finite fields. This “logarithmic Grothendieck conjecture,” which is our main result over
finite fields (Theorem 7.4), is as follows:

Theorem B: Let Slog be a log scheme such that S is the spectrum of a finite field k,
and the log structure is isomorphic to the one associated to the chart N → k given by
the zero map. Let Xlog → Slog and (X′)log → Slog be stable log-curves such that at least
one of X or X ′ is not smooth over k. Let ΔXlog (respectively, Δ(X ′)log) be the geometric

fundamental group of Xlog (respectively, (X′)log) obtained by considering log admissible
coverings of Xlog (respectively, (X′)log) (as in [Mzk], §3). Then the natural map

IsomSlog (Xlog , (X′)log)→ OutDρ (ΔXlog ,Δ(X ′)log )

is bijective. Here, the “D” stands for “degree one (outer isomorphisms).”

This Theorem is derived directly from Tamagawa’s results on affine hyperbolic curves over
finite fields. Its proof occupies the bulk of the present paper.

Finally, by supplementing Theorem B with various arguments concerning the funda-
mental groups of curves over local fields, we obtain the following local result (Theorem
9.8):

Theorem C: Let K be a finite extension of Qp; let A ⊆ K be its ring of integers; and let
k be its residue field. Let XK be a smooth, geometrically connected, proper curve of genus
g ≥ 2 over K. Assume that XK admits a stable extension X → Spec(A) such that the
abelian variety portion of Pic0(Xk) (where Xk = X ⊗A k) is ordinary. Then the natural
outer representation

ρX : ΓK → Out(ΔXK )

of the absolute Galois group of K on the geometric fundamental group of XK completely
determines the isomorphism class of XK .

Even though this is a rather weak version of the Grothendieck Conjecture (compared to
the results we obtain over finite and global fields), this sort of result is interesting in the
sense that it shows that curves behave somewhat differently from abelian varieties (cf. the
Remark following Theorem 9.8).
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Now we discuss the contents of the paper in more detail. Sections 1 through 7 are
devoted to deriving Theorem B from the results of [Tama]. In Section 1, we show how to
recover the set of irreducible components of a stable curve from its fundamental group. In
Section 2, we review various facts from [Mzk] concerning log admissible coverings, and show
how one can define an “admissible fundamental group” of a stable log-curve. In Section
3, we show how one can group-theoretically characterize the quotient of the admissible
fundamental group corresponding to étale coverings. In Section 4, we show that the tame
fundamental group of each connected component of the smooth locus of a stable log-curve
is contained inside the admissible fundamental group of the stable log-curve. In Section
5, we show how to recover the set of nodes (including the information of which irreducible
components each node sits on) of a stable log-curve from its admissible fundamental group.
In Section 6, we show how the log structure at a node of a stable log-curve can be recovered
from the admissible fundamental group of the stable log-curve. In Section 7, we put all
of this information together and show how one can derive Theorem B from the results of
[Tama].

In Sections 8 and 9, we shift from studying curves over finite fields to studying curves
over local fields. In order to do this, it is necessary first to characterize (group-theoretically)
the quotient of the (characteristic zero) geometric fundamental group of a curve over a local
field which corresponds to admissible coverings. This is done in Section 8. In Section 9,
we first show (Lemma 9.1) that the degree of an isomorphism between the arithmetic
fundamental groups of two curves over a local field is necessarily one. This is important
because one cannot apply Theorem 7.4 to an arbitrary isomorphism of fundamental groups:
one needs to know first that the degree is equal to one. Then, by means of a certain trick
which allows one to reduce the study of curves over local fields with smooth reduction to
the study of curves over local fields with singular reduction, we show (Theorem 9.2) that
one can recover the reduction (over the residue field) of a given smooth, proper, hyperbolic
curve over a local field group-theoretically. The rest of Section 9 is devoted to curves with
ordinary reduction, culminating in the proof of Theorem C. Finally, in Section 10, we
observe that Theorem A follows formally from Theorem 9.2.

The author would like to thank A. Tamagawa for numerous fruitful discussions con-
cerning the contents of [Tama], as well as the present paper. In some sense, the present
paper is something of a long appendix to [Tama]: That is to say, several months after the
author learned of the results of [Tama], it dawned upon the author that by using admissible
coverings, Theorem A follows “trivially” from the results of [Tama]. On the other hand,
since many people around the author were not so familiar with admissible coverings or log
structures, it seemed to the author that it might be useful to write out a detailed version
of this “trivial argument.” The result is the present paper.

Finally, the author would also like to thank Prof. Y. Ihara for his encouragement and
advice during the preparation of this paper.
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Section 1: The Set of Irreducible Components

Let k be the finite field of q = pf . Fix an algebraic closure k of k. Let Γ be the
absolute Galois group of k. Let X → Spec(k) be a morphism of schemes.

Definition 1.1: We shall call X a multi-stable curve of genus g if dimk(H1(X,OX)) = g,

and Xk

def= X ⊗k k is a finite disjoint union of stable curves over k of genus ≥ 2. If X is
multi-stable, then we shall call X sturdy if every irreducible component of the normalization
of Xk has genus ≥ 2.

Thus, in particular, a curve is stable if and only if it is geometrically connected and multi-
stable. Moreover, a finite étale covering of a multi-stable (respectively, sturdy) curve is
multi-stable (respectively, sturdy).

Suppose that X is stable of genus g ≥ 2. Fix a base-point x ∈ X(k). Then we
may form the (algebraic) fundamental group Π def= π1(X,xk) of X. Let Xk

def= X ⊗k k;

Δ def= π1(Xk, xk). Then we have a natural exact sequence of groups

1 → Δ→ Π→ Γ→ 1

induced by the structure morphism X → Spec(k).

The purpose of this Section is to show how the set of irreducible components of X
can be canonically recovered from the morphism Π → Γ. Fix a prime l different from p.
Let us consider the étale cohomology group He def= H1

ét(Xk,Zl). Let ψ : X̃ → X be the

normalization of X. Then we can also consider Hn def= H1
ét(X̃k ,Zl). By considering the

long exact cohomology sequence in étale cohomology associated to

0 → Zl → ψ∗ψ∗Zl → (ψ∗ψ∗Zl)/Zl → 0

we obtain a surjection He → Hn. Let us write Hc for the kernel of this surjection. (Here,
“e” (respectively, “n”; “c”) stands for étale (respectively, normalization; combinatorial).)
Note that Hc is a free Zl-module of rank NX − IX + 1, where NX (respectively, IX) is
the number nodes (respectively, irreducible components) of Xk. Moreover, Hn is a free
Zl-module of rank equal to twice the sum of the genera of the connected components of
X̃k.

Thus, we obtain a natural exact sequence of Γ-modules

0→ Hc → He → Hn → 0

Let φ ∈ Γ be the automorphism of k given by raising to the qth power. Then one sees
easily that some finite power of φ acts trivially on Hc. On the other hand, by the Weil
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conjectures (applied to the various geometric connected components of X̃), no power of φ
acts with eigenvalue 1 on Hn. We thus obtain the following

Proposition 1.2: The natural exact sequence 0 → Hc → He → Hn → 0 can be
recovered entirely from Π→ Γ.

Proof: Indeed, He = Hom(Δ,Zl), while Hc can be recovered by looking at the maximal
Zl-submodule of He on which some power of φ ∈ Γ acts trivially. ©

Let Le = He ⊗ Fl; Lc = Hc ⊗ Fl; Ln = Hn ⊗ Fl. Thus, Le = H1
ét(Xk,Fl), and we

have an exact sequence of Γ-modules

0 → Lc → Le → Ln → 0

Moreover, elements of Le correspond to étale, abelian coverings of Xk of degree l. Let
L∗ ⊆ Le be the subset of elements whose image in Ln is nonzero.

Suppose that α ∈ L∗. Let Yα → Xk be the corresponding covering. ThenNYα = l·NX .
Thus, we obtain a morphism ε : L∗ → Z that maps α �→ IYα . Since L∗ is a finite set,
the image of ε is finite. Let M ⊆ L∗ be the subset of elements α on which ε attains its
maximum. Let us define a pre-equivalence relation “∼” on M as follows:

If α, β ∈ M , then we write α ∼ β if, for every λ, μ ∈ F×
l for which

λ · α+ μ · β ∈ L∗, we have λ · α+ μ · β ∈ M .

Now we have the following result:

Proposition 1.3: Suppose that X is stable and sturdy. Then “∼” is, in fact, an

equivalence relation, and moreover, CX
def= M/ ∼ is naturally isomorphic to the set of

irreducible components of Xk.

Proof: First, let us observe, that IYα is maximal (equal to l(IX − 1) + 1) if and only if
there exists a unique irreducible component Zα of X̃k over which the covering Yα → Xk is

nontrivial. Now, if Z is a connected component of X̃k, let LZ
def= H1

ét(Z,Fl). Thus,

Ln =
⊕
Z

LZ

where the direct sum is over the connected components of X̃k. Then it follows immediately
from the definitions that M consists precisely of those elements α ∈ L∗ whose image in
Ln has (relative to the above direct sum decomposition) exactly one nonzero component
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(namely, in LZα). Moreover, α ∼ β is equivalent to Zα = Zβ . Finally, that every Z
appears as a Zα follows from the sturdiness assumption. This completes the proof. ©

Remark: Note that although at first glance the set CX = M/ ∼ appears to depend on the
choice of prime l, it is not difficult to see that in fact, if one chooses another prime l, and
hence obtains a resulting C ′

X = M ′/ ∼′, one obtains a natural isomorphism CX
∼= C ′

X

(compatible with the isomorphisms just obtained of CX and C ′
X to the set of irreducible

components of Xk) as follows: If α ∈ M and α′ ∈ M ′, let us consider the product
Yαα′ = Yα ×X Y ′

α. Thus, we have a cyclic étale covering Yαα′ → X of degree l · l′. Then
one checks easily that α and α′ correspond to the same irreducible component if and only
if (Yαα′)k has precisely l · l′(IX − 1) + 1 irreducible components.

Proposition 1.4: Suppose that X is stable and sturdy. Then the set of irreducible
components of Xk (together with its natural Γ-action) can be recovered entirely from
Π→ Γ.

Proof: Indeed, it follows from Proposition 1.2 that L∗ can be recovered from Π → Γ.
Moreover, we claim that M can be recovered, as well. Indeed, the maximality of IYα is
equivalent to the minimality of NYα − IYα + 1 = l · NX − IYα + 1, which is equal to the
dimension over Fl of the “Lc” of Y . Once one has M , it follows that one can also recover
“∼,” hence by Proposition 1.3, one can recover the set of irreducible components of Xk.
Finally, by the above Remark, the set that one recovers is independent of the choice of l.
©

Corollary 1.5: Suppose that X is stable and sturdy. Let H ⊆ Π be an open subgroup.
Let YH → X be the corresponding étale covering. Then the set of irreducible components
of YH can be recovered from Π→ Γ and H.

Proof: Let k′ be the (finite) extension of k which is the subfield of k stabilized by the
image of H in Γ. Then YH is geometrically connected, hence stable and sturdy over k′.
Thus, we reduce to the case H = Π, YH = X. But then the set of irreducible components
of X is the set of Γ-orbits of the set of irreducible components of Xk. Thus, the Corollary
follows from Proposition 1.4. ©

Looking back over what we have done, one sees that in fact, we have proven a stronger
result that what is stated in Corollary 1.5. Indeed, fix an irreducible component I ⊆ X.
Then let Jl(I) be the set of k-valued l-torsion points of the Jacobian of the normalization
of Ik. Then not only have we recovered set of all irreducible components I, we have also
recovered, for each I, the set Jl(I) (with its natural Frobenius action). We state this as a
Corollary:

6



Corollary 1.6: Suppose that X is stable and sturdy, and l is a prime number different
from p. Then for each irreducible component I of X, the set Jl(I) (with its natural
Frobenius action) can be recovered naturally from Π→ Γ.

Section 2: The Admissible Fundamental Group

Let r and g be nonnegative integers such that 2g−2+r ≥ 1. If (C → Mg,r;σ1, . . . , σr :
Mg,r → C) is the universal r-pointed stable curve of genus g over the moduli stack, then C
and Mg,r have natural log structures defined by the respective divisors at infinity and the
images of the σi. Denote the resulting log morphism by Clog → Mlog

g,r . Let X → S be the
underlying curve associated to an r-pointed stable curve of genus g over a scheme S (where
S is the underlying scheme of some log scheme Slog). Suppose that X is equipped with the
log structure (call the resulting log scheme Xlog) obtained by pulling back Clog → Mlog

g,r

via some log morphism Slog → Mlog

g,r whose underlying non-log morphism S → Mg,r is
the classifying morphism of X (equipped with its marked points). In this case, we shall
call Xlog → Slog an r-pointed stable log-curve of genus g. Similarly, we have r-pointed
multistable log-curves of genus g: that is, Xlog → Slog such that over some finite étale
covering S ′ → S, Xlog ×S S ′ becomes a finite union of stable pointed log-curves.

Let k be as in the preceding section. Let Slog be a log scheme whose underlying scheme
is Spec(k) and whose log structure is (noncanonically!) isomorphic to the log structure
associated to the morphism N → k, where 1 ∈ N �→ 0 ∈ k. Let Xlog → Slog be a stable
log-curve of genus g ≥ 2.

Next, we would like to consider liftings of Xlog → Slog . Let A be a complete discrete
valuation ring which is finite over Zp and has residue field equal to k. Let T log be a log
scheme whose underlying scheme is Spec(A) and whose log structure is that defined by the
special point S = Spec(k) ⊆ T . Also, let us assume that Slog is equal to the restriction of
the log structure of T log to S = Spec(k) ⊆ T . Let Y log → T log be a stable log-curve of
genus g whose restriction to Slog is Xlog → Slog. In this case, we shall say that Y log → T log

lifts Xlog → Slog. It is well-known (from the log-smoothness of the moduli stack of stable
curves equipped with its natural log structure) that such log-curves Y log → T log always
exist.

Next, we would like to consider log admissible coverings

Z log → Y log

of Y log. We refer to [Mzk], §3.5, for the rather lengthy and technical definition and first
properties of such coverings. It follows in particular from the definition that Z is a stable
curve over T . In fact, (as is shown in [Mzk], Proposition 3.11), one can define such coverings
without referring to log structures. That is, there is a notion of an admissible covering
([Mzk]. §3.9) Z → Y (which can be defined without using log structures). Moreover,
Z → Y is admissible if and only if Z admits a log structure such that Z log → Y log is log
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admissible. In [Mzk], we dealt strictly with the case where Z is geometrically connected
over T . Here, we shall call Z → Y multi-admissible if Z is a disjoint union of connected
components Zi such that each Zi → Y is admissible.

Let η be the generic point of T . Let Yη = Y ×T η. If Z → Y is multi-admissible, then
it will always be the case that the restriction Zη → Yη of this covering to the generic fiber
is finite étale. Now suppose that ψη : Zη → Yη is a finite étale covering. If ψη extends to
an multi-admissible covering Z → Y , then this extension is unique ([Mzk], §3.13).

Definition 2.1: We shall call ψη pre-admissible if it extends to an multi-admissible
covering ψ : Z → Y . We shall call ψη potentially pre-admissible if it becomes pre-admissible
after a tamely ramified base-change (i.e., replacing A by a tamely ramified extension of
A).

Thus, in particular, if A′ is a tamely ramified extension of A, then Yη ⊗A A′ → Yη is
potentially pre-admissible. If ψη is potentially pre-admissible and Zη is geometrically
connected over η, then it is pre-admissible if and only if Zη has stable reduction over A.

Lemma 2.2 : Suppose that Zη → Yη and Z ′
η → Yη are pre-admissible. Let Z ′′

η
def=

Zη ×Yη Z ′
η. Then Z ′′

η → Yη is pre-admissible.

Proof: Let Z → Y and Z ′ → Y be the respective multi-admissible extensions. Let Z ′′

be the normalization of Y in Z ′′
η . Thus, we have a natural morphism Z ′′ → Z ×Y Z ′ which

is an isomorphism at height one primes. In particular, Z ′′ is étale over Y at all height one
primes. It thus follows from Lemma 3.12 of [Mzk] that Z ′′ → Y is multi-admissible. ©

Lemma 2.3 : Suppose that Zη → Yη is pre-admissible, and that Zη → Yη factors
through finite étale surjections Zη → Z ′

η and Z ′
η → Yη. Then Z ′

η → Yη is pre-admissible.

Proof: Similar to that of Lemma 2.2. ©

Let K be the quotient field of A. Fix an algebraic closure K of K. Suppose that Y
is equipped with a base-point y ∈ Y (A) such that the corresponding morphism T → Y
avoids the nodes of the special fiber of Y . Write ΠY for π1(YK , yK). Thus, we have a
natural surjection ΠY → Gal(K/K), whose kernel is a group ΔY ⊆ ΠY .

Definition 2.4: We shall call an open subgroup H ⊆ ΠY co-admissible if the corre-
sponding finite étale covering Zη → Yη is potentially pre-admissible. Let Πadm

Y be the
quotient of ΠY by the intersection

⋂
H of all co-admissible H ⊆ ΠY .
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Remark: The admissible fundamental group Πadm
Y has already been defined and studied

by K. Fujiwara ([Fuji]). Moreover, the author learned much about Πadm
Y (as well as about

the theory of log structures in general) by means of oral communication with K. Fujiwara.

It is easy to see that the intersection
⋂

H of Definition 2.4 is a normal subgroup of
ΠY . Thus, Πadm

Y is a group. Moreover, by Lemmas 2.2 and 2.3, it follows that an open
subgroup H ⊆ ΠY is co-admissible if and only if Ker(ΠY → Πadm

Y ) ⊆ H. Finally, it is
immediate from the definitions that the subfield of K stabilized by the image of

⋂
H in

Gal(K/K) is the maximal tamely ramified extension K∞ of K. Thus, we have a surjection

Πadm
Y → Gal(K∞/K)

whose kernel Δadm
Y ⊆ Πadm

Y is a quotient of ΔY .

Definition 2.5: We shall refer to as orderly coverings of Yη those coverings Zη → Yη

which are Galois and factor as Zη → Yη ×T U → Yη, where the first morphism is pre-
admissible; the second morphism is the natural projection; U = Spec(B); and B is a
tamely ramified finite extension of A. We shall refer to as orderly quotients of Πadm

Y those
quotients of Πadm

Y that give rise to orderly coverings of Yη.

It is easy to see that orderly quotients of Πadm
Y are cofinal among all quotients of Πadm

Y .

Let A∞ ⊆ K∞ be the normalization of A in K∞. Let k∞ (respectively, m∞) be the
residue field (respectively, maximal ideal) of A∞. Let T∞ = Spec(A∞), and let us endow
T∞ with the log structure given by the multiplicative monoid OT∞ − {0} (equipped with
the natural morphism into OT∞). We call the resulting log scheme T log∞ . Let Slog∞ be
the log scheme whose underlying scheme is Spec(k∞) and whose log structure is pulled
back from T log∞ . Thus, the log structure on Slog∞ is (noncanonically!) isomorphic to the log
structure defined by the zero morphism (Z(p))≥0 → k∞. (Here “(Z(p))≥0” denotes the set of
nonnegative rational numbers whose denominators are prime to p.) Note that Gal(K∞/K)
induces Slog-automorphisms of Slog∞ . In fact, it is easy to see that this correspondence
defines a natural isomorphism

Gal(K∞/K) ∼= AutSlog (Slog
∞ )

Now we have the following important

Lemma 2.6 : Suppose that we are given:

(1) another lifting (Y ′)log → (T ′)log (where T ′ = Spec(A′)) of Xlog → Slog

(2) an algebraic closure K
′

of K ′ = Q(A′) (hence a resulting K ′
∞ ⊆ K

′
;

(S′)log∞ );
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(3) an Slog-isomorphism γ : Slog∞ ∼= (S′)log∞ ;

(4) a base-point y′ ∈ Y ′(A′) such that y|S = y′|S in X(k).

Then there is a natural isomorphism between the surjections Πadm
Y → Gal(K∞/K) and

Πadm
Y ′ → Gal(K′∞/K ′).

Proof: Let us first consider coverings of Yη obtained by pulling back tamely ramified
Galois coverings of K. Thus, if U = Spec(B) → T is finite, Galois, and tamely ramified
(obtained from some field extension K ⊆ L), let U log be the log scheme obtained by
equipping U with the log structure defined by the special point u of U . Thus, we obtain a
finite, log étale morphism U log → T log. By base-changing to Slog, we then obtain a finite,
log étale morphism V log → Slog. On the other hand, by the definition of “log étaleness,”
this morphism then necessarily lifts to a finite, log étale morphism (U ′)log → (T ′)log ,
whose underlying morphism U ′ → T ′ is a Galois, tamely ramified finite extension. Thus,
if we pass to the limit, and apply this construction to the extension L = K∞ of K, we
end up with some maximal tamely ramified extension L′ of K ′. By the functoriality of
this construction, we have a natural isomorphism Gal(L/K) ∼= Gal(L′/K ′). Now observe
that there is a unique K ′-isomorphism L′ ∼= K ′∞ which (relative to this construction) is
compatible with γ. Thus, we get an isomorphism Gal(L′/K ′) = Gal(K′

∞/K ′), hence an
isomorphism Gal(K∞/K) ∼= Gal(K′

∞/K ′), as desired.

Now let us consider orderly coverings Zη → Yη. Thus, we have a factorization
Zη → Yη ×T U → Yη. Let Z be the normalization of Yη in Z. Then Z → Y ×T U is
multi-admissible. Thus, Z admits a log structure such that we have a log multi-admissible
covering Z log → Y log ×T log U log . Base-changing, we obtain a log multi-admissible cov-
ering Z log|Slog → Xlog ×Slog V log. But since log multi-admissible coverings are log
étale, it thus follows that this covering lifts uniquely to a log multi-admissible covering
(Z ′)log → (Y ′)log ×(T ′)log (U ′)log . Similarly, we obtain a bijective correspondence between
Yη-automorphisms of Zη and Y ′

η′ -automorphisms of Z ′
η′ . Now observe further that K∞-

valued points of Zη over yK∞ define A∞-valued points of Z over y (since Z is proper over
A). Moreover, these points define T log∞ -valued points of Z log over yT log

∞
, hence (by reduc-

ing modulo m∞) Slog
∞ -valued points of Z log|Slog over ySlog , hence (using γ) (S′)log

∞ -valued
points of Z log|Slog over ySlog = y′

Slog , hence (by log étaleness) (T ′)log
∞ -valued points of

(Z ′)log over y′
T log , which, finally, give rise to K ′∞-valued points of Z ′

η′ over y′
K′∞

.

Thus, in summary, we have defined a natural equivalence of categories between orderly
coverings of Yη and orderly coverings of Y ′

η′. Moreover, this equivalence is compatible
with the fiber functors defined by the base-points yK∞ and y′

K′∞
. Thus, we obtain an

isomorphism between the surjections Πadm
Y → Gal(K∞/K) and Πadm

Y ′ → Gal(K′∞/K ′), as
desired. ©

Now let us interpret Lemma 2.6. In summary, what Lemma 2.6 says is the following:
Suppose we start with the following data:
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(1) a log scheme Slog, where S = Spec(k), and the log structure is (non-
canonically!) isomorphic to the log structure associated to the zero
morphism N → k;

(2) a log scheme Slog∞ over Slog which is (noncanonically!) k-isomorphic to
Spec(k) equipped with the log structure associated to the zero morphism
(Z(p))≥0 → k (where the N ⊆ (Z(p))≥0 is pulled back from a chart for
Slog as in (1));

(3) a stable log-curve Xlog → Slog of genus g;

(4) a base-point x ∈ X(k) which is not a node.

Then, to this data, we can naturally associate an “admissible fundamental group” Πadm
X

with augmentation Πadm
X → ΠSlog

def= AutSlog (Slog∞ ). That is to say, by choosing a lifting
of the above data, we may take Πadm

X = Πadm
Y , and the augmentation to be Πadm

Y →
Gal(K∞/K). Then Lemma 2.6 says that, up to canonical isomorphism, Πadm

X and its
augmentation do not depend on the choice of lifting.

Definition 2.7: We shall refer to the data (1) through (4) above as admissible data
of genus g. Given admissible data as above, we shall write π1(Xlog , xSlog

∞
) for Πadm

X and

π1(Slog, Slog
∞ ) for ΠSlog . We shall refer to Πadm

X as the admissible fundamental group of X.
Write ΔXlog ⊆ Πadm

X for the kernel of the augmentation. We shall refer to ΔXlog as the
geometric admissible fundamental group of X.

Next, let us observe that ΠSlog admits a natural surjection onto ΠS
def= Gal(k/k). We

shall denote the kernel of this surjection by IS ⊆ ΠSlog , and refer to IS as the inertia
subgroup of ΠSlog . Note that IS is isomorphic to the inverse limit of the various (k′)× (for
finite extensions k′ ⊆ k of k), where the transition morphisms in the inverse limit are given
by taking the norm. Or, in other words, IS = Ẑ′(1), where Ẑ′ is the inverse limit of the
quotients of Z of order prime to p, and the “(1)” is a Tate twist. Thus, we have a natural
exact sequence

1→ IS = Ẑ′(1) → ΠSlog → ΠS = Gal(k/k)→ 1

Suppose that we are given a continuous action of ΠSlog on a finite set Σ. Then we can
associate a geometric object to Σ as follows. Without loss of generality, we can assume
that the action on Σ is transitive. If we choose a lifting T log of Slog (where T = Spec(A)),
then Σ corresponds to some finite, tamely ramified extension L of K. Let B be the
normalization of A in L. Equip U

def= Spec(B) with the log structure defined by the special
point u of U . Thus, we obtain U log . Equip Spec(k(u)) with the log structure induced by
that of U log . Then the geometric object associated to Σ is the finite, log étale morphism

11



Spec(k(u))log → Slog. We shall call such morphisms finite, tamely ramified coverings of
Slog.

Now suppose that we have an open subgroup H ⊆ Πadm
X that surjects onto ΠSlog . Let

ΔH
def= H

⋂
ΔXlog . In terms of liftings, H corresponds to a finite étale covering Zη → Yη,

where Zη is geometrically connected over η. Note that by a well-known criterion ([SGA7]),
Zη has stable reduction over A if and only if IS acts unipotently on Hom(ΔH ,Zl) (for some
prime l distinct from p). But, as noted above, in this situation, Zη has stable reduction if
and only if Zη → Yη is pre-admissible. If Zη → Yη is pre-admissible, it extends to some
Z log → Y log, which we can base-change via Slog → T log to obtain a log admissible covering
Z log|Slog → Xlog. Conversely, every log admissible covering of Xlog can be obtained in
this manner. Thus, in summary, we have the following result:

Corollary 2.8: The open subgroups of Πadm
X that correspond to orderly coverings can be

characterized entirely group-theoretically by means of Πadm
X → ΠSlog (and ΠSlog → ΠS).

Moreover, these subgroups can be interpreted in terms of geometric coverings of Xlog

(namely, base-change via a finite, tamely ramified covering of Slog, followed by a log
admissible covering).

Remark: Note that this Corollary thus allows us to speak of “orderly coverings of Xlog ,”
i.e., coverings that arise from orderly quotients (Definition 2.5) of Πadm

X = Πadm
Y .

Before continuing, let us make the following useful technical observation:

Lemma 2.9 : Given any stable X over k, there always exists an admissible covering
Z → X such that Z is (multi-stable and) sturdy.

Indeed, this follows from the definition of an admissible covering, plus elementary com-
binatorial considerations. Moreover, an admissible covering of a sturdy curve is always
sturdy. Thus, if one wishes to work only with sturdy curves, one can always pass to such
a situation by replacing our original X by some suitable admissible covering of X.

Finally, although most of this paper deals with the case of nonpointed stable curves,
it turns out that we will need to deal with pointed stable curves a bit later on. In fact, it
will suffice to consider pointed smooth curves. Thus, let g and r be nonnegative integers
such that 2g−2+r ≥ 1. Let Slog∞ → Slog be as above, and let Xlog → Slog be an r-pointed
stable log-curve of genus g such that X is k-smooth. Also, let x ∈ X(k) be a nonmarked
point. Then it is easy to see that, just as above, we can define (by considering various
liftings to some A, then showing that what we have done does not depend on the lifting)
an admissible fundamental group Πadm

X (with base-point xSlog
∞
), together with a natural

surjection

Πadm
X → ΠSlog

12



Moreover, the kernel ΔXlog ⊆ Πadm
X of this surjection is naturally isomorphic to the tame

fundamental group of Xk (with base-point xk). Unlike the singular case, we don’t particu-
lar gain anything new by doing this, but what will be important is that we still nonetheless
obtain a natural surjection Πadm

X → ΠSlog which arises functorially from the same frame-
work as the nontrivial Πadm

X → ΠSlog that appears in the case of singular curves.

Section 3: Characterization of the Étale Fundamental Group

We maintain the notation of the preceding Section. Thus, in particular, we have a
stable log-curve Xlog → Slog , together with a choice of Slog∞ , and a base-point x ∈ X(k)
(which is not a node). Then note that we have a natural morphism of exact sequences:

1 −→ ΔXlog −→ Πadm
X −→ ΠSlog −→ 1⏐⏐�
⏐⏐�

⏐⏐�
1 −→ ΔX −→ ΠX −→ ΠS −→ 1

Here the vertical arrows are all surjections. The goal of this Section is to show how one
can recover the quotient Πadm

X → ΠX group-theoretically from Πadm
X → ΠSlog .

Let Y log → Xlog be a log admissible covering which is abelian, with Galois group
equal to Fl, where l is a prime number (which is not necessarily distinct from p). Let us
consider the following condition on this covering:

(*) Over k, there is an infinite log admissible covering Z log → Xlog

k
which

is abelian with Galois group Zl such that the intermediate covering
corresponding to Zl → Fl is Y log

k
→ Xlog

k
.

Here, by “infinite log admissible covering,” we mean an inverse limit of log admissible
coverings in the usual finite sense. Suppose that Y log → Xlog satisfies (*). Then we claim
that Y → X is, in fact, étale. Indeed, if p = l, then every abelian log admissible covering
of degree l is automatically étale, so there is nothing to prove. If p 
= l, then we can fix a
node ν ∈ X, and consider the ramification over the two branches of X at ν. Considering
this ramification gives rise to an inertia subgroup H ⊆ Zl. If Y log → Xlog is ramified
at ν, then H surjects onto Fl, so H = Zl. On the other hand, by the definition of a
log admissible covering, in order to have infinite ramification occuring over the geometric
branches of X at ν, we must also have infinite ramification over the base Slog. But, by
(*), Z log → Xlog is already log admissible over Slog ⊗k k (which is, of course, étale over
Slog). This contradiction shows that Z log, and hence Y log, are unramified over Xlog at ν.
Thus, we see that (*) implies that Y → X is étale, as claimed. Note that conversely, if we
know that Y → X is étale to begin with, then it is easy to see that (*) is satisfied. Thus,
for an abelian log admissible covering Y log → Xlog of prime degree l, (*) is equivalent to
the étaleness of Y → X.

13



Now observe that the kernel of ΔXlog → ΔX is normal not just in ΔXlog, but also in
Πadm

X . Let Π′
X = Πadm

X /Ker(ΔXlog → ΔX). Let Δ′
X be the kernel of Π′

X → ΠS . Thus,
ΔX ⊆ Δ′

X ⊆ Π′
X . Then we have the following result:

Proposition 3.1: The quotient Πadm
X → Π′

X can be recovered entirely group theoreti-
cally from Πadm

X → ΠSlog .

Proof: It suffices to characterize subgroups H ⊆ Πadm
X of finite index that contain

Ker(ΔXlog → ΔX). Without loss of generality, we may assume that H is normal in
Πadm

X and (by Corollary 2.8) corresponds to an orderly covering. Since an orderly covering
may be factored as a composite of a log multi-admissible covering followed by a tamely
ramified covering of Slog, one sees immediately that we may reduce to the case where
H corresponds to a log admissible covering. Let G = Πadm

X /H. Let Y log → Xlog be
the corresponding covering. For every subgroup N ⊆ G, denote by Y log → Y log

N the
corresponding intermediate covering. By considering ramification at the nodes, one sees
immediately that Y → X is étale if and only for every cyclic N ⊆ G of prime order,
Y → YN is étale. But for such N , the étaleness of Y → YN is equivalent to the condition
(*) discussed above. Moreover, it is clear that (*) can be phrased in entirely group theoretic
terms, using only Πadm

X → ΠSlog (and ΠSlog → ΠS). This completes the proof. ©

Now suppose that Y log → Xlog is an abelian orderly covering of prime order l obtained
from a quotient of Π′

X such that Y is geometrically connected. Assume l 
= p. Consider
the following condition on Y log → Xlog :

(†) There do not exist any infinite abelian orderly coverings Z log → Xlog

k
with Galois group Zl that satisfy both of the following two conditions:
(i) the intermediate covering corresponding to Zl → Fl is Y log

k
→ Xlog

k
;

(ii) some finite power φM of the Frobenius morphism φ ∈ Γ = ΠS

stabilizes Z log → Xlog

k
and acts on the Galois group Zl with eigenvalue

qM .

Because Y log → Xlog is abelian of prime order, it follows that one of the following holds:

(1) Y log → Xlog is obtained from an étale covering Y → X (where Y is
geometrically connected) base-changed by Slog → S.

(2) Y log → Xlog is obtained by base-change via Xlog → Slog from some
totally (tamely) ramified covering of Slog.

Suppose that (†) is satisfied. Then we claim that (1) holds. Indeed, if this were false, then
(2) would hold, but it is clear that if (2) holds, then one can easily construct Z log → Xlog

k

that contradict (†) (by pulling back via Xlog → Slog an infinite ramified covering of Slog).
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This proves the claim. Now suppose that (1) holds. Then we claim that (†) is satisfied.
To prove this, suppose that there exists an offending Z log → Xlog

k
. This offending covering

defines an injection Zl ↪→ Hom(Δ′
X ,Zl) → Hom(ΔX ,Zl) = H1

ét(Xk,Zl). On the other
hand, as we saw in Section 1, by theWeil conjectures, no power φM of φ acts with eigenvalue
qM onH1

ét(Xk,Zl). This contradiction completes the proof of the claim. Thus, in summary,
(1) is equivalent to (†). In other words, we have essentially proven the following result:

Proposition 3.2: The quotient Πadm
X → ΠX can be recovered entirely group theoreti-

cally from Πadm
X → ΠSlog .

Proof: It suffices to characterize finite index subgroupsH ⊆ Π′
X that containKer(Π′

X →
ΠX). Without loss of generality, we may assume that H is normal in Π′

X and (by Corol-
lary 2.8) corresponds to an orderly covering. Let G = Π′

X/H. Let Y log → Xlog be the
corresponding covering. Again, without loss of generality, we may assume that Y is geo-
metrically connected over k. For every normal subgroup N ⊆ G, denote by Y log

N → Xlog

the corresponding intermediate covering. Next, we observe the following: Y log → Xlog

arises from an étale covering of X if and only if, for every normal subgroup N ⊆ G such
that Y log

N → Xlog is orderly and G/N is cyclic of prime order, YN → X arises from an
étale covering of X. (This equivalence follows immediately from the definitions and the
fact that Δ′

X/ΔX is abelian.) But for such Y log
N → Xlog , we can apply the criterion (†)

discussed above. Moreover, it is clear that (†) can be phrased in entirely group theoretic
terms, using only Π′

X → ΠSlog (and ΠSlog → ΠS). This completes the proof. ©

Section 4: The Decomposition Group of an Irreducible Component

We maintain the notation of the preceding Section. Fix an irreducible component
I ⊆ X. Then, corresponding to I, there is a unique (up to conjugacy) decomposition
subgroup

Δadm
I ⊆ Πadm

X

which may be defined as follows. Let Z log → Xlog be the log scheme obtained by taking
the inverse limit of the various Y log

H → Xlog corresponding to open orderly subgroups
H ⊆ Πadm

X . Choose an “irreducible component” J ⊆ Z that maps down to I ⊆ X. Here,
by “irreducible component of Z,” we mean a compatible system of irreducible components
IH ⊆ YH . Then Δadm

I ⊆ Πadm
X is the subgroup of elements that take the irreducible

component J to itself. We can also define an inertia subgroup

Δin
I ⊆ Δadm

I

as follows: Namely, we let Δin
I be the subgroup of elements of Δadm

I that act trivially on
J . (That is to say, elements of Δin

I will, in general, act nontrivially on the log structure of
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J , but trivially on the underlying scheme J .) By Proposition 3.2 and Corollaries 1.5 and
1.6, we thus obtain the following:

Proposition 4.1: Suppose that X is stable and sturdy. Then one can recover the
set of irreducible components of X from Πadm

X → ΠSlog . Moreover, for each irreducible
component I of X, one can recover the corresponding inertia and decomposition subgroups
Δin

I ⊆ Δadm
I ⊆ Πadm

X entirely from Πadm
X → ΠSlog .

Proof: That one can recover Δadm
I follows formally from Proposition 3.2 and Corollary

1.5. Now observe that (as is well known – see, e.g., [DM]) any automorphism of I that acts
trivially on Jl(I) (where l ≥ 5) is the identity. This observation, coupled with Corollary
1.6, allows one to recover Δin

I . ©

Now let us suppose that the base-point x ∈ X(k) is contained in I. Let Ĩ be the
normalization of I. Then one can also define Δadm

I as follows. Let Ĭ ⊆ I be the open
subset which is the complement of the nodes. We give Ĭ a log structure by restricting to Ĭ
the log structure of Xlog . Denote the resulting log scheme by Ĭ log . Now let us regard the
points of Ĩ that map to nodes of I as marked points of Ĩ. This gives Ĩ the structure of a
smooth, pointed curve over k. Because Ĩ → Spec(k) is smooth, it follows that there exists
a unique multistable pointed log-curve Ĩ log → Slog whose underlying curve is Ĩ and whose
marked points are as just specified. Since x ∈ Ĩ(k), by using Slog∞ → Slog, we can define
(as in the discussion as the end of Section 2) the admissible fundamental group Πadm

I of
Ĩ log. Moreover, we have natural log morphisms

Ĭ log −→ Xlog

⏐⏐�
Ĩ log

where the vertical morphism is an open immersion. Now observe that if we restrict (say,
orderly) coverings of Xlog to Ĭ log , such a covering extends naturally to an orderly covering
of Ĩ log. Thus, we obtain a natural morphism

ζI : Πadm
I → Πadm

X

It is immediate from the definitions that the subgroup ζI(Πadm
I ) ⊆ Πadm

X is a “Δadm
I .”

Proposition 4.2: Suppose that X is stable and sturdy. Then the morphism ζI is
injective.

Proof: Let ΠI
Slog be the image of Πadm

I in ΠSlog . Then let us note that we have a
commutative diagram of exact sequences:
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1 −→ Δ
Ĩlog −→ Πadm

I −→ ΠI
Slog −→ 1⏐⏐�

⏐⏐�
⏐⏐�

1 −→ ΔXlog −→ Πadm
X −→ ΠSlog −→ 1

where the vertical arrow on the right is the natural inclusion. Thus, it suffices to prove
that Δ

Ĩlog → ΔXlog is injective. In particular, we are always free to replace Slog by a
finite, tamely ramified covering of Slog.

Now it suffices to show that (up to base-changing, when necessary, by finite, tamely
ramified coverings of Slog) we can obtain every log admissible covering of Ĩ log by pulling
back a log admissible covering of Xlog . Let us call X untangled at I if every node of X
that lies on I also lies on an irreducible component of X distinct from I. In general, we
can form a (“combinatorial”) étale covering of X as follows: Write X = I

⋃
J , where J is

the union of the irreducible components of X other than I. Let Ĩ1 and Ĩ2 (respectively,
J1 and J2) be copies of Ĩ (respectively, J). For i = 1, 2, let us glue Ĩi to Ji at every node
of I that also lies on J . If ν is a node of I that only lies on I, let α and β be the points
of Ĩ that lie over ν. Then glue α1 ∈ Ĩ1 to β2 ∈ Ĩ2, and β1 ∈ Ĩ1 to α2 ∈ Ĩ2. With these
various gluings, Ĩ1

⋃
Ĩ2

⋃
J1

⋃
J2 forms a curve Y which is finite étale over X. Moreover,

Y is untangled at Ĩ1 and Ĩ2, and Πadm
I = Πadm

Ii
(for i = 1, 2). Thus, it suffices to prove the

Proposition under the assumption that X is untangled at I. Therefore, for the remainder
of the proof, we shall assume that X is untangled at I.

Now we would like to construct another double étale covering of X. For convenience,
we will assume that p ≥ 3. (The case p = 2 is only combinatorially a bit more difficult.)
Write X = I

⋃
J , as above. Since X is sturdy, it follows that (after possibly enlarging k),

there exists an étale covering J̃ → J of degree two such that for any irreducible component
C ⊆ J , the restriction of J̃ → J to C is nontrivial. Let I1 and I2 be copies of I. If ν is
a node on I and J , let α (respectively, β) be the corresponding point on I (respectively,
J). (After possibly enlarging k) we may assume that J̃ has two k-rational points β1 and
β2 over β ∈ J . Now, for i = 1, 2, glue αi ∈ Ii to βi ∈ J̃ . We thus obtain a double étale
covering Y = I1

⋃
I2

⋃
J̃ → X. Endow Y with the log structure obtained by pulling back

the log structure of Xlog . One can then define various log structures on the irreducible
components of Y , analogously to the way in which various log structures were defined on
an irreducible component I of X above. We will then use similar notation for the log
structures thus obtained on irreducible components of Y .

Now let Llog → I log be a Galois log admissible covering of I log def= Ĩ log (recall that
I = Ĩ) of degree d. Let M log → J̃ log be an abelian log multi-admissible covering of degree
d with the following property:

(*) For each node ν on I and J , suppose that over the corresponding
α ∈ I, L has n geometric points, each ramified with index e over I.

17



Then, we stipulate that for i = 1, 2, over βi ∈ J̃ , M has n geometric
points, each ramified with index e over I.

Note that such an M log → J̃ log exists precisely because the β’s on J̃ come in pairs. Now
let Llog

1 and Llog
2 be copies of Llog. Then, for each i = 1, 2, let us glue the geometric

points of Li|αi to those of M |βi . This gives us (after possibly replacing Slog by a tamely
ramified covering of Slog) a log admissible covering Z log → Y log , where Z = L1

⋃
L2

⋃
M .

Moreover, the restriction of Z log → Y log to I log
i (for i = 1, 2) is Llog → I log. This completes

the proof of the Proposition. ©

Section 5: The Set of Nodes

We continue with the notation of the preceding Section. Thus, Xlog → Slog is a stable
log-curve of genus g. Let us also assume that X is sturdy. In this Section, we would like
to show how (by a technique similar to, but slightly more complicated than that employed
in Section 1) we can recover the set of nodes of X. This, in turn, will allow us to recover
the decomposition group of a node. In the following Section, we shall then show how the
log structure at a node can be reconstructed from the decomposition group at the node.

Let l and n be prime numbers distinct from each other and from p. We assume
moreover that l ≡ 1 (mod n). This means that all nth roots of unity are contained in Fl.
Let us write Gn ⊆ F×

l for the subgroup of nth roots of unity. Next, let us fix a Gn-torsor
over Xk

Y → X

which is nontrivial over the generic point of every irreducible component of Xk. (Here,
by Gn-torsor, we mean a cyclic étale covering of X of degree n whose Galois group
is equipped with an isomorphism with Gn.) Equip Y with the log structure pulled
back from that of Xlog . Let us consider the admissible fundamental group Πadm

Y of

Y log . Let H1
adm(Y

log

k
,Fl)

def= Hom(ΔY log ,Fl). Note that we have a natural injection

Le def= H1
ét(Yk,Fl) ↪→ La def= H1

adm(Y
log

k
,Fl). Let us write Lr for the cokernel of this in-

jection. (Here, “e” (respectively, “a”; “r”) stands for “étale” (respectively, “admissible”;
“ramification”). Thus, we have an exact sequence

0 → Le → La → Lr → 0

which may (by Proposition 3.2) be recovered from Πadm
X → ΠSlog and the subgroup of

Πadm
X that defines Y → X. Note, moreover, that Gn acts on the above exact sequence.

Let Lr
G ⊆ Lr be the subset of elements on which Gn acts via the character Gn ↪→ F×

l . Let
L∗ ⊆ La be the subset of elements that map to nonzero elements of Lr

G.
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We would like to analyze Lr
G. First of all, let us consider Lr. For each node ν ∈ Y (k),

write Yν for the completion of Y at ν, and let γν and δν be the two irreducible components
of Yν. Let D′

Y (respectively, EY ) be the free Fl-module which is the direct sum of copies of
Fl(−1) (where the “(−1)” is a Tate twist) generated by the symbols γν , δν (respectively, I),
as ν (respectively, I) ranges over all the nodes of Yν (respectively, irreducible components
of Yk). Let DY ⊆ D′

Y be the submodule generated by (γν − δν) · Fl(−1) (where ν ranges
over all the nodes of Yν). Note that we have a natural morphism D′

Y → EY given by
assigning to the symbol γν (respectively, δν) the unique irreducible component I in which
γν (respectively, δν) is contained. In particular, restricting to DY , we obtain a morphism

DY → EY

Let KY ⊆ DY be the kernel of this morphism. Now let us note that we have a natural
morphism

λ : Lr → D′
Y

given by restricting an admissible covering of Yk to the various γν and δν . It follows
immediately from the definition of an admissible covering that Im(λ) ⊆ DY . Moreover,
by considering the Leray-Serre spectral sequence in étale cohomology for the morphism
Ĭ ↪→ Ĩ (where Ĩ ⊆ Yk is the normalization of an irreducible component of Yk, and Ĭ is the
complement of the points that map to nodes), plus the definition of an admissible covering,
one sees easily that, in fact, λ(�Lr) = KY . Finally, by counting dimensions, we see that
λ is injective. Thus, we see that λ defines a natural isomorphism of Lr with KY . In the
following, we shall identify Lr and KY by means of λ.

Now let us consider the subset Lr
G ⊆ Lr. Let μ ∈ X(k) be a node. For each such μ,

let us fix a node ν ∈ Y (k) over μ. If σ ∈ Gn (regarded as the Galois group of Y → X), we
shall write aσ ∈ F×

l for σ regarded as an element of F×
l . Fix a generator ω ∈ Fl(−1). Let

ωμ
def=

∑
σ∈Gn

(a−1
σ · ω)(σ(γν )− σ(δν )) ∈ DY

One checks easily that ωμ is, in fact, an element of KY = Lr. Moreover, by calculating
τ (ωμ) (for τ ∈ Gn), one sees that ωμ is manifestly an element of Lr

G ⊆ Lr. Finally, it is
routine to check that, in fact, Lr

G is freely generated by the ωμ (as μ ranges over the nodes
of X(k) – but ω is fixed). This completes our analysis of Lr

G.

Suppose that α ∈ L∗. Let Zα → Yk be the corresponding covering. Let ε : L∗ → Z
be the morphism that maps α to NZα (i.e., the number of nodes of Zα). Let M ⊆ L∗ be
the subset of elements α on which ε attains its maximum. Let us define a pre-equivalence
relation “∼” on M as follows:

If α, β ∈ M , then we write α ∼ β if, for every λ, μ ∈ F×
l for which

λ · α+ μ · β ∈ L∗, we have λ · α+ μ · β ∈ M .
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Now we have the following result:

Proposition 5.1: Suppose that X is stable and sturdy. Then “∼” is, in fact, an
equivalence relation, and moreover, M/ ∼ is naturally isomorphic to the set of nodes of
Xk.

Proof: Suppose that α ∈ L∗ maps to a linear combination (with nonzero coefficients) of
precisely c ≥ 1 of the elements ωμ ∈ Lr

G. Then one calculates easily that Zα has precisely
ε(α) = l(NY −cn)+cn= l ·NY +cn(1− l) nodes. Thus, ε(α) attains its maximum precisely
when c = 1. Thus, M ⊆ L∗ consists of those α which map to a nonzero multiple of one of
the ωμ’s. It is thus easy to see (as in the proof of Proposition 1.3) that M/ ∼ is naturally
isomorphic to the set of nodes μ ∈ X(k). ©

Remark: Note that at first glance the set M/ ∼ appears to depend on the choice of n, l,
and Y → X. However, it is not difficult to see that in fact, if one chooses different data
n′ 
= n, l′ 
= l, and Y ′ → X, and hence obtains a resulting M ′/ ∼′, then there is a natural
isomorphism (M/ ∼) ∼= (M ′/ ∼′) (compatible with the isomorphisms just obtained of
M/ ∼ and M ′/ ∼′ to the set of nodes of Xk) as follows: If α ∈ M and α′ ∈ M ′, let us
consider the product Zαα′ = Zα ×X Z ′

α. Thus, we have an admissible covering Zαα′ → X
of degree (ln)(l′n′). Then one checks easily that α and α′ correspond to the same node if
and only if (Zαα′)k has precisely nn′{l · l′(NX − 1) + 1} nodes.

Proposition 5.2: Suppose that X is stable and sturdy. Then the set of nodes of Xk
(together with its natural ΠS -action) can be recovered entirely from Πadm

X → ΠSlog . More-
over, (relative to Proposition 1.4) for each node μ of Xk, the set of irreducible components
of Xk containing μ can also be recovered entirely from Πadm

X → ΠSlog .

Proof: Indeed, (after possibly replacing k by a finite extension of k) one can always
choose l, n, and Y → X as above. Then one can recover Le and La from Πadm

X → ΠSlog

and the subgroup of Πadm
X defined by Y → X. Thus, one can also recover Lr. We saw in

Section 1 that for any Zα, NZα −IZα , as well as IZα , may be recovered group-theoretically.
In particular, NZα can also be recovered group-theoretically. Thus, M and ∼ can also be
recovered group-theoretically. Moreover, by the above Remark, M/ ∼ is independent of
the choice of n, l, and Y → X. (That is to say, the isomorphism (M/ ∼) ∼= (M ′/ ∼′) of
the above Remark can clearly be recovered group-theoretically.) This completes the proof
that the nodes can be recovered group-theoretically.

Now let us consider the issue of determining which irreducible components of Xk (rel-
ative to the reconstruction of the set of irreducible components of Xk given in Proposition
1.4) μ lies on. To this end, note first that (by Corollary 1.6) the genus gI of each irreducible
component I of Xk can also be recovered group-theoretically. (Indeed, Jl(I) has precisely
l2gI elements.) Thus, if α ∈ M corresponds to the node μ, the irreducible components I
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of Xk containing μ are precisely those that are the image of irreducible components J of
Zα such that (gJ − 1) > l · n · (gI − 1). ©

Corollary 5.3: Suppose that X is stable and sturdy. Let H ⊆ Πadm
X be an open orderly

subgroup. Let Y log
H → Xlog be the corresponding covering. Then the sets of nodes NYH

and NX of YH and X, respectively, as well as the natural morphism NYH → NX can be
recovered from Πadm

X → ΠSlog and H. Moreover, the set of irreducible components of
(YH)k on which each node of NYH lies can also be recovered from Πadm

X → ΠSlog and H.

Proof: In this case, in order to obtain the morphism NYH → NX it is useful to choose l
and n prime to the index of H in Πadm

X , and to choose the Gn-torsor “Y ” over YH to be
the pull-back of a Gn-torsor on XH . The rest of the proof is straightforward. ©

Now let μ be a node of X. Let I ⊆ X be an irreducible component of X on which μ
sits. Then there is a unique (up to conjugacy) decomposition subgroup

Δadm
μ ⊆ Πadm

X

which may be defined as follows. Let Z log → Xlog be the log scheme obtained by taking
the inverse limit of the various Y log

H → Xlog corresponding to open orderly subgroups
H ⊆ Πadm

X . Choose a “node” ν ∈ Z that maps down to μ ∈ X. Here, by “node of Z,”
we mean a compatible system of nodes νH ∈ YH . Then Δadm

μ ⊆ Πadm
X is the subgroup of

elements that take the node ν to itself. If ν sits on an irreducible component J of Z which
lies over I, then we can also form Δadm

I ,Δin
I ⊆ Πadm

X , hence Δadm
μ,I

def= Δadm
I

⋂
Δadm

μ , and

Δin
μ,I

def= Δin
I

⋂
Δadm

μ . Up to conjugacy, Δadm
μ,I and Δin

μ,I are independent of all the choices
made. Now, it follows formally from Corollary 5.3 that

Corollary 5.4: Given μ and I as above, one can recover Δadm
μ ;Δadm

μ,I ;Δin
μ,I ⊆ Πadm

X

entirely from Πadm
X → ΠSlog .

Section 6: The Log Structure at a Node

We maintain the notation of the preceding Section. In addition to assuming that X
is stable and sturdy, let us assume that it is untangled (i.e., every node lies on two distinct
irreducible components). Let μ ∈ X(k) be a node of X. Let I, I ′ be the two irreducible
components of X on which μ lies. Let Z log → Xlog be the covering corresponding to the
trivial subgroup of Πadm

X . Let ν be a node of Z lying over μ. Let J (respectively, J ′) be the
irreducible component of Z that touches ν and lies over I (respectively, I ′). Thus, as in the
preceding Section, we have various subgroups, such as Δadm

μ ,Δadm
I ,Δadm

I ′ ⊆ Πadm
X . Note

that (since X is untangled) elements of Δadm
μ fix J and J ′. Thus, Δadm

μ ⊆ Δadm
I ,Δadm

I ′ .
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Next, consider the natural morphism Δadm
μ ⊆ Πadm

X → ΠS . Since μ is k-rational, this
morphism is surjective. Let us denote the kernel of this morphism by Δin

μ . Thus, we have
an exact sequence

1 → Δin
μ → Δadm

μ → ΠS → 1

Moreover, by sorting through the definitions, it is clear that Δin
I ,Δin

I ′ ⊆ Δin
μ .

Next, let us consider the natural morphism Δin
I ⊆ Πadm

X → ΠSlog . It is clear that the
image of this morphism is contained in the inertia subgroup IS ⊆ ΠSlog . Thus, we obtain
a natural morphism Δin

I → IS . By using the fact that the restriction of the log structure
of Xlog to the generic point of I is the pull-back (to the generic point of I) of the log
structure of Slog, it is then easy to see that this morphism Δin

I → IS is an isomorphism.
Thus, we see that we obtain a natural isomorphism

Δin
I

∼= IS = Ẑ′(1)

In the sequel, we shall identify Δin
I with Ẑ′(1) via this isomorphism. Similarly, we have

Δin
I ′ ∼= Ẑ′(1).

In order to understand these various groups better, it is helpful to think in terms of a
local model, as follows: If e ≥ 1 is an integer, let R

def= k[[x, y, t]]/(xy− te), A
def= k[[t]] ⊆ R.

Let X def= Spec(R), T
def= Spec(A). Endow T with the log structure defined by the divisor

t = 0. Let Nnode be the monoid given by taking the quotient of the free monoid on the
symbols log(x), log(y), log(t) by the relation log(x) + log(y) ∼ e · log(t). Map Nnode → R
by letting log(?) �→?, for ? = x, y, t. Endow X with the log structure associated to
Nnode → R. Thus, we obtain a morphism of log schemes X log → T log . Let us denote
by τ : Spec(k) ↪→ T the special point of T . Moreover, there is a unique e such that the
completion of Xk at μk is equal to X log |τ . We shall call this e the order of the node μ.

Let I = V (y, t) = Spec(k[[x]]); I ′ = V (x, t) = Spec(k[[y]]); Xτ = X ×T τ . Let
U = X − I − I ′. Let us denote by Πadm

X the quotient of the fundamental group of U
which is tamely ramified over the divisors I and I ′. Note that Πadm

X is abelian (thus
eliminating the need to choose a base point). Indeed, this follows by noting that Πadm

X
for e ≥ 1 injects into Πadm

X for e = 1; but when e = 1, I ⋃ I ′ is a divisor with normal
crossings, so Πadm

X ∼= Ẑ′(1)× Ẑ′(1). Let us denote by Πadm
T the tame fundamental group

of T − τ . Thus, Πadm
T = Ẑ′(1). Note (for instance, by reducing to the case e = 1) that

the decomposition groups of the divisors I and I ′ are both equal to Πadm
X . Let us denote

by Δin
I ,Δin

I′ ⊆ Πadm
X the inertia groups of the divisors I and I ′. As above, it is easy

to see that the natural map Δin
I ⊆ Πadm

X → Πadm
T is an isomorphism. Thus, we have

isomorphisms Δin
I ∼= Ẑ′(1); Δin

I′ ∼= Ẑ′(1). Observe, moreover, (for instance, by reducing to
the case e = 1) that Δin

I
⋂
Δin

I′ = {1}.
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Let ξ
def= V (x, y, t) ∈ X. Let us denote by Πadm

I the tame fundamental group of I − ξ.
Thus, Πadm

I = Ẑ′(1). Similarly, we have Πadm
I′ = Ẑ′(1). Note, moreover, that we have a

natural morphism Πadm
X /Δin

I ↪→ Πadm
I . Thus, we obtain a morphism

Ẑ′(1) = Δin
I′ → Πadm

X /Δin
I → Πadm

I = Ẑ′(1)

This morphism corresponds to multiplication by some element ε ∈ Ẑ′. We claim that ε = e.
Indeed, this follows from the fact that taking roots of the function x|I on I corresponds
to taking roots of te = y−1 · x over I ′ − ξ (since y is invertible on I ′ − ξ). Thus, we see
that we have injections

Ẑ′(1)× Ẑ′(1) = Δin
I ×Δin

I′ ↪→ Πadm
X ⊆ Πadm

I′ × Πadm
I = Ẑ′(1)× Ẑ′(1)

Here the composite Ẑ′(1)× Ẑ′(1) → Ẑ′(1)× Ẑ′(1) is given by multiplication by e.

Now let us translate what we have learned locally back into information concerning our
original X. First of all, let us observe that Πadm

X (respectively, Δin
I ; Δ

in
I′) corresponds to

Δin
μ (respectively, Δin

I ; Δ
in
I ′ ). Thus, in particular, we obtain that Δin

I

⋂
Δin

I ′ = {1}. Next,
let us observe that Δadm

I /Δin
I may be identified with Πadm

Ĭ
, i.e., the tame fundamental

group of Ĭ. Let us denote by Δin
μ [I ] ⊆ Πadm

Ĭ
= Δadm

I /Δin
I the subgroup of elements that

fix ν and act trivially on the residue field of ν. That is to say, Δin
μ [I ] is the inertia group

of μ in Πadm
Ĭ

. In particular, we have a natural isomorphism

Δin
μ [I ] ∼= Ẑ′(1)

Similarly, we have an isomorphism Δin
μ [I ′] ∼= Ẑ′(1). Then Δin

μ [I ] (respectively, Δin
μ [I ′])

corresponds to Πadm
I (respectively, Πadm

I′ ).

Now let us observe that, by the theory developed thus far, all the subgroups and iso-
morphisms of the above discussion may be recovered from Πadm

X → ΠSlog , except (possibly)
the injections

ιμ : Ẑ′(1) ∼= Δin
μ [I ] ↪→ Πadm

Ĭ
; ι′μ : Ẑ

′(1) ∼= Δin
μ [I

′] ↪→ Πadm
Ĭ ′

(or, equivalently, except (possibly) the isomorphisms Ẑ′(1) ∼= Δin
μ [I ], Ẑ′(1) ∼= Δin

μ [I ′]).
Thus, we have the following result

Proposition 6.1: Suppose that X is stable, sturdy, and untangled, and that μ ∈ X(k)
is a node. Then the order e of the node μ may be recovered entirely from Πadm

X → ΠSlog ,
ιμ, and ι′μ.
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Next we would like to consider the issue of reconstructing the log structure of X at μ
group-theoretically. Let Slog

μ be the log scheme whose underlying scheme is S = Spec(k),
and whose log structure is that obtained by pulling back the log structure of Xlog via μ :
S ↪→ X. Thus, we have a natural structure morphism Slog

μ → Slog. Let MS (respectively,
Mμ) be the monoid defining the log structure of Slog (respectively, Slog

μ ). Thus, we have
k× ⊆ MS ; k× ⊆ Mμ. Moreover, MS/k× = N; Mμ/k× = Nnode (where Nnode is the monoid
introduced above). The structure morphism Slog

μ → Slog defines a morphism MS → Mμ

(which is the identity on k×), hence an inclusion N → Nnode. Let us denote by ε ∈ Nnode

the image of e ∈ N in Nnode. Let us denote by Le ⊆ MS (respectively, Lε ⊆ Mμ) the
inverse image of e ∈ N (respectively, ε ∈ Nnode) in MS (respectively, Mμ). Thus, we obtain
an isomorphism of k×-torsors

ζμ : Le → Lε

We would like to reconstruct ζμ group-theoretically.

First, recall that we may naturally regard k× as a quotient of Ẑ′(1). Now it follows
from Kummer theory that

Lemma 6.2 : There is a natural one-to-one correspondence between elements of Lε and
morphisms ψ : Δadm

μ → k× whose restriction to Ẑ′(1)× Ẑ′(1) = Δin
I ×Δin

I ′ ⊆ Δadm
μ is the

composite of the morphism (e, e) : Ẑ′(1)× Ẑ′(1)→ Ẑ′(1) (i.e., multiplication by e on both

factors) with the natural quotient Ẑ′(1)→ k×.

Note that here, the k×-torsor structure on the set of such ψ is given by observing that the
difference between two such ψ is a morphism Hom(ΠS , k×), which may be identified with
k× by means of the Frobenius element φ ∈ Γ = ΠS .

Similarly, we have

Lemma 6.3 : There is a natural one-to-one correspondence between elements of Le

and morphisms ψ : ΠSlog → k× whose restriction to Ẑ′(1) = IS ⊆ ΠSlog is the composite

of the morphism e· : Ẑ′(1) → Ẑ′(1) (i.e., multiplication by e) with the natural quotient

Ẑ′(1)→ k×.

Moreover, the correspondence induced by ζμ : Le
∼= Lε between the ψ of Lemma 6.2

and the ψ of Lemma 6.3 is the correspondence obtained by composing ΠSlog → k× with
Δadm

μ ↪→ Πadm
X → ΠSlog .

We thus conclude the following

Proposition 6.4: Suppose that X is stable, sturdy, and untangled, and that μ ∈ X(k)
is a node. Then the morphism ζμ : Le

∼= Lε may be recovered entirely from Πadm
X → ΠSlog ,

ιμ, and ι′μ.
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Section 7: The Main Result over Finite Fields

We are now ready to put everything together and prove the main result over finite
fields. The point is that the theory developed thus far in this paper will allow us to
reduce the Grothendieck conjecture for singular stable log-curves over finite fields to the
Grothendieck conjecture for smooth, affine, hyperbolic curves over finite fields (which is
already proven in [Tama]).

Let Slog∞ → Slog be as in Definition 2.7. Let Xlog → Slog and (X′)log → Slog be
stable log-curves of genus g (equipped with base-points x ∈ X(k) and x′ ∈ X ′(k)), such
that neither X nor X ′ is smooth over k. Let us assume that we are given a commutative
diagram of continuous group homomorphisms:

Πadm
X

αΠ−→ Πadm
X ′⏐⏐�
⏐⏐�

ΠSlog
id−→ ΠSlog

where the vertical morphisms are the natural ones, and the horizontal morphisms are iso-
morphisms. The goal of this Section is to show that (under a certain technical assumption
on the “RT-degree”) αΠ arises (up to conjugation by an element of ΔXlog) from a geometric
Slog-isomorphism of Xlog with (X′)log .

We begin by proving the result under the following simplifying assumption on X and
X ′:

(*) X and X ′ are sturdy and untangled, and their nodes are rational
over k.

By Proposition 4.1, αΠ induces a natural isomorphism between the sets of irreducible
components of X and X ′. Let I ⊆ X be an irreducible component. Then there is a
corresponding irreducible component I ′ ⊆ X ′. Moreover, by Proposition 4.1, αΠ necessar-
ily maps decomposition (respectively, inertia) subgroups of Πadm

X to similar subgroups of
Πadm

X ′ . Thus, we may choose Δadm
I ⊆ Πadm

X such that αΠ maps Δadm
I onto Δadm

I ′ ⊆ Πadm
X ′ .

Moreover, we also have αΠ(Δin
I ) = Δin

I ′ . Thus, since Πadm
Ĭ

def= Δadm
I /Δin

I , we get a natural
isomorphism

αΠ
Ĭ
: Πadm

Ĭ
∼= Πadm

Ĭ ′

Now as we saw at the beginning of Section 6, the natural morphism Δin
I → IS is an

isomorphism. Hence, the quotient of Πadm
Ĭ

induced by Πadm
X → ΠSlog is simply Πadm

Ĭ
→

ΠS . Thus, we see that αΠ
Ĭ
fits into a diagram:
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Πadm
Ĭ

αΠ
Ĭ−→ Πadm

Ĭ ′⏐⏐�
⏐⏐�

ΠS
id−→ ΠS

Let ΔĬ = Ker(Πadm
Ĭ

→ ΠS). Since Ĭ is a smooth affine hyperbolic curve over k, we are
now in a position to apply the theory of [Tama]. The only two consequences of the theory
of [Tama] that we will use in this paper are the following:

(1) αΠ
Ĭ
induces a commutative diagram

Ĭ
αĬ−→ Ĭ ′

⏐⏐�
⏐⏐�

S
γI−→ S

of morphisms of schemes. Here the vertical morphisms are the natural
ones, and the horizontal morphisms are isomorphisms. The morphism
γI , however, need not be the identity.

(2) For each node μ of X lying on I, the morphisms ιμ : Ẑ′(1) ↪→ Πadm
Ĭ

(well-defined up to conjugation by an element of ΔĬ) of Proposition
6.1 are taken to each other by αΠ, up to multiplication by some unit
θI ∈ (Ẑ′)×. Here, the automorphism induced by θI on the quotient
Ẑ′(1) → k× is equal to the automorphism of k× induced by γI .

It follows, in particular, that θI ∈ pZ ⊆ Q (i.e., θI is a rational number which is a power
of p). In fact, as we shall see below (Lemma 7.1), θI is independent of I. Thus, we shall
write

degRT (αΠ) def= θI ∈ pZ ∈ Q

and we shall refer to this number as the RT-degree of αΠ on I (where “RT” stands for
“ramification-theoretic,” as opposed to another type of degree that will be discussed in
Section 9).

Lemma 7.1 : The rational number θI is independent of the irreducible component I.

Proof: Suppose that there is another irreducible component J of X that touches I. Let
J ′ ⊆ X ′ be the corresponding component of X ′. Let us focus our attention at a node
μ lying on I and J . By Corollary 5.3, there is a corresponding node μ′ ∈ X ′(k). Let e
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(respectively, e′) be the order of the node μ (respectively, μ′). Now we have a commutative
diagram:

Ẑ′(1)× Ẑ′(1) = Δin
μ [I ]×Δin

μ [J ]
(e,e)←− Ẑ′(1)× Ẑ′(1) = Δin

J ×Δin
I

(1,1)−→ Ẑ′(1) = IS⏐⏐�θI×θJ

⏐⏐�
⏐⏐�id

Ẑ′(1)× Ẑ′(1) = Δin
μ′ [I ′]×Δin

μ′ [J ′]
(e′,e′)←− Ẑ′(1)× Ẑ′(1) = Δin

J′ ×Δin
I ′

(1,1)−→ Ẑ′(1) = IS

where the vertical map in the middle is that induced by αΠ, and θI and θJ are the
morphisms obtained from the theory of [Tama] (cf., item (2) in the list given above). It
follows immediately from the commutativity of this diagram that θI = e′ ·e−1 = θJ . (Thus,
we also obtain a new proof of the rationality of θI .) This completes the proof. ©

Let us assume henceforth that

(†) degRT (αΠ) = 1

Thus, αĬ is an S-isomorphism, and the ιμ are taken to each other precisely (not just
up to some multiple) by αΠ. By the theory of [Tama], this means that αĬ induces an
S-isomorphism I ∼= I ′ that respects nodes. We thus obtain an S-isomorphism

αX : X ∼= X ′

Thus, it remains to consider log structures. Let X̃ → X be the normalization of X. Let
us equip X̃ with the log structure defined by the divisor consisting of the points of X̃ that
map to nodes of X. Thus, we obtain a log scheme X̃log whose log structure is generically
trivial. Similarly, we have (X̃ ′)log . Note that αX already induces an S-isomorphism

α
X̃log : X̃

log ∼= (X̃ ′)log

Now let us concentrate on a single node μ ∈ X(k) (which corresponds to μ′ ∈ X ′(k)). It
is not difficult to see that given X̃log , in order to recover the Slog-log scheme Xlog in a
neighborhood of μ, it suffices to know the isomorphism

ζμ : Le
∼= Lε

But by Proposition 6.4, this morphism may be recovered from Πadm
X → ΠSlog , plus item

(2) of the above review of the theory of [Tama] (now that we know/are assuming that all
the θI = 1). Thus, we see that αX extends naturally to a morphism

αXlog : Xlog ∼= (X′)log
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as desired.

The next step is to check that the morphism induced by αlog
X between Πadm

X and
Πadm

X ′ agrees (up to conjugation by an element of ΔXlog) with the original αΠ. But this
follows by using a similar argument to that of [Tama]: Namely, first we observe that
it is clear from the construction of αXlog that if we start with an αΠ that arises from
some β : Xlog ∼= (X′)log , then β = αXlog . Then we note that for each orderly covering
Y log → Xlog , there is a corresponding orderly covering (Y ′)log → (X′)log , together with
an isomorphism Πadm

Y
∼= Πadm

Y ′ induced by αΠ. Moreover, this isomorphism gives rise to
an isomorphism αY log that is compatible with αXlog . It thus follows formally from the
general theory of the algebraic fundamental group that the isomorphism of Πadm

X with
Πadm

X ′ induced by αXlog differs from αΠ by conjugation by some element η ∈ Πadm
X . On

the other hand, since the automorphism of Πadm
X given by conjugation by η must induce

the identity on ΠSlog , and ΠSlog clearly has trivial center, it thus follows that the image
of η in ΠSlog is trivial. Thus, η ∈ ΔXlog , as desired.

Now let us denote by IsomSlog (Xlog , (X′)log) the set of Slog-isomorphisms of log
schemes between Xlog and (X′)log . Next, let us consider the set IsomΠ

Slog
(Πadm

X ,Πadm
X ′ )

of isomorphisms Πadm
X

∼= Πadm
X ′ that preserve and induce the identity on the quotient ΠSlog .

Then given α, α′ ∈ IsomΠ
Slog (Π

adm
X ,Πadm

X ′ ), we regard α ∼ α′ if and only if there exists
an η ∈ ΔXlog such that

α(η · π · η−1) = α′(π)

for all π ∈ Πadm
X . The resulting set of equivalence classes will be denoted

IsomGO
Π

Slog
(Πadm

X ,Πadm
X ′ )

Here, “GO” stands for “geometrically outer.” Now observe that it is clear that inner
automorphisms induced by elements of ΔXlog do not affect the RT-degree. Thus, it makes
sense to consider

IsomGORT
ΠSlog

(Πadm
X ,Πadm

X ′ ) ⊆ IsomGO
ΠSlog

(Πadm
X ,Πadm

X ′ )

that is, the classes of isomorphisms α whose RT-degree is equal to 1.

Thus, in summary, we have proven (at least under the assumption (*)) the following
result:

Theorem 7.2: Let Slog∞ → Slog be as in Definition 2.7. Let Xlog → Slog and (X′)log →
Slog be stable log-curves (equipped with base-points x ∈ X(k) and x′ ∈ X ′(k)), such that
at least one of X or X ′ is not smooth over k. Then the natural map

IsomSlog (Xlog , (X′)log)→ IsomGORT
Π

Slog
(Πadm

X ,Πadm
X ′ )
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is bijective.

Proof: It remains to deal with the case where the simplifying assumption (*) is not
satisfied. But let us note that given an arbitrary Xlog as in the statement of the Theorem,
there is always a finite orderly covering Y log → Xlog such that Y satisfies (*). Moreover,
any admissible covering (with rational nodes) of Y will clearly still satisfy (*). Thus, it is
clear that we may take Y log → Xlog such that the corresponding (via αΠ : Πadm

X
∼= Πadm

X ′ )
(Y ′)log → (X′)log is such that Y ′ also satisfies (*). Then one concludes the Theorem by
descent. ©

Just as in [Tama], if ΔXlog is center-free, then one can rewrite Theorem 7.2 in terms
of outer automorphisms. For this, we need the following

Lemma 7.3 : The group ΔXlog is center-free.

Proof: The proof is formally the same as that given in [Tama], §1, for the case where X
is smooth over k. The only facts that one needs to check are:

(1) The pro-p-quotient Δp
Xlog of ΔXlog is free.

(2) There exists an open subgroup H ⊆ ΔXlog for which Hp is nonabelian.

We begin by checking (1). First note that H2
ét(Xk

,Fp) = 0. Indeed, this follows immedi-
ately from writing out the long exact sequence associated to

0 −→ Fp −→ Ga
1−F−→ Ga −→ 0

(where “F” is the Frobenius morphism). Thus, for all finite étale coverings Y → Xk,
we also have H2

ét(Y,Fp) = 0. It thus follows that H2(Δp
Xlog ,Fp) ∼= H2(Δp

X ,Fp) =
H2

ét(Xk,Fp) = 0. (Here we use the elementary fact that the natural surjection Δp
Xlog →

Δp
X is an isomorphism.) On the other hand, it is a well-known fact from group-theory

([Shatz], Chapter III, §3, Proposition 2.3) that this implies that Δp
Xlog is free. This com-

pletes the verification of (1). As for (2), since the smooth case is already discussed in
[Tama], §1, we shall concentrate here on the case when X is singular. Then it suffices
to note the existence of an orderly covering of Xlog

k
whose dual graph has a nonabelian

fundamental group. But the existence of such a covering follows immediately from simple
combinatorial considerations. ©

If G1 and G2 are two topological groups, let us denote by Isom(G1, G2) the set of
continuous isomorphisms G1

∼= G2. Let us denote by Out(G1, G2) the set of equivalence
classes of Isom(G1, G2), where we consider two isomorphisms equivalent if they differ by
an inner automorphism. If G1 = G2, then we shall denote Out(G1, G2) by Out(G1).
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If α ∈ Isom(G1, G2), then α induces an isomorphism Out(α) : Out(G1) ∼= Out(G2).
Moreover, Out(α) depends only the class [α] ∈ Out(G1, G2) defined by α.

Suppose that Xlog and (X′)log are as in Theorem 7.2. Let

ρX : ΠSlog → Out(ΔXlog)

be the representation arising from the extension 1 → ΔXlog → Πadm
X → ΠSlog → 1. Note

that ρX is independent of the choice of base point x. Similarly, we have ρX ′. Let us denote
by

Outρ(ΔXlog ,Δ(X ′)log )

the set of [α] ∈ Out(ΔXlog ,Δ(X ′)log) such that Out(α)◦ρX = ρX ′. Now note that we have
a natural map

IsomGO
Π

Slog
(Πadm

X ,Πadm
X ′ )→ Outρ(ΔXlog ,Δ(X ′)log)

Then it follows group-theoretically (cf. [Tama]) from the fact that ΔXlog has trivial center
that this map is a bijection. Let us denote by

OutDρ (ΔXlog ,Δ(X ′)log)

the image under this bijection of

IsomGORT
ΠSlog

(Πadm
X ,Πadm

X ′ ) ⊆ IsomGO
ΠSlog

(Πadm
X ,Πadm

X ′ )

(Here, the “D” stands for “degree one.”) Thus, one can rephrase Theorem 7.2 in the
following (seemingly weaker) form:

Theorem 7.4: Let Slog∞ → Slog be as in Definition 2.7. Let Xlog → Slog and (X′)log →
Slog be stable log-curves such that at least one of X or X ′ is not smooth over k. Then
the natural map

IsomSlog (Xlog , (X′)log)→ OutDρ (ΔXlog ,Δ(X ′)log )

is bijective.
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Section 8: Characterization of Admissible Coverings

So far, we have been working with stable curves over a finite field. In this Section
and the next, we shift gears and consider stable curves over local fields. The purpose of
this Section is to show that given such a curve, one can characterize the quotient of the
fundamental group (of the generic curve) corresponding to admissible coverings in entirely
group-theoretic terms. The technique of proof is similar to that of Proposition 3.1, where
we characterized étale coverings among all admissible coverings.

Let K be a finite extension of Qp. Let K be an algebraic closure of K; let ΓK
def=

Gal(K/K). Let Kunr ⊆ K be the maximal unramified extension of K in K; let Γunr
K ⊆ ΓK

be the corresponding closed subgroup. Let A ⊆ K (respectively, Aunr ⊆ Kunr) be the
ring of integers; k be the residue field of A; S = Spec(A). Let us endow S with the log
structure defined by the closed point. Let Xlog → Slog be a stable log-curve of genus g
which is generically smooth. Thus, XK → Spec(K) is a smooth curve of genus g. Choose
a base-point x ∈ X(K). Let ΠXK

def= π1(XK , xK ) be the resulting fundamental group.
Thus, we have an exact sequence

1 → ΔXK → ΠXK → ΓK → 1

where ΔXK

def= π1(XK , xK). Let ΠXK → Πadm
X be the quotient (as in Definition 2.4) of

ΠXK by the intersection
⋂

H of all the co-admissible open subgroups H ⊆ ΠXK .

Let YK → XK be an abelian étale covering of degree p. Let us assume that YK is
geometrically connected overK. Now let us consider the following condition on YK → XK :

(*) Over Kunr, there is an infinite abelian étale covering ZKunr →
XKunr = XK ⊗K Kunr with Galois group Zp such that the interme-
diate covering corresponding to Zp → Fp is YKunr → XKunr .

In the next few paragraphs, we would like to show that condition (*) is equivalent to the
statement that YK → XK extends to a finite abelian étale covering Y → X. Indeed, the
necessity of condition (*) follows easily from well-known facts concerning the fundamental
group of Xk = X ⊗A k. Thus, it remains to show that condition (*) is sufficient.

To prove the sufficiency of (*), we will need to review certain basic facts from [FC]
concerning the p-adic Tate module of a semi-abelian scheme over S. Let JK → Spec(K)
be the Jacobian of XK . We shall always regard JK as equipped with its usual principal
polarization. By [FC], Chapter I, Theorem 2.6 and Proposition 2.7, it follows that JK

extends uniquely to a semi-abelian scheme J → S over S. Let VJ
def= Hom(Qp/Zp, J(K))

be the p-adic Tate module of JK . Thus, VJ is a free Zp-module of rank 2g, equipped
with a natural ΓK-action. In Chapter III of [FC], one finds a theory of degenerations of
semi-abelian varieties. According to this theory (more precisely: the equivalence “Mpol”
of Corollary 7.2 of [FC], Chapter III), there exists an abelian scheme G → S, together
with a torus T → S, and an extension
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0 → T → J̃ → G → 0

over S, such that “roughly speaking,” J is obtained as a rigid analytic quotient of J̃ by an
étale sheaf P of free abelian groups of rank r

def= dim(T/S) on S. (Caution: Our choice
of notation differs somewhat from that of [FC].) Let V

J̃

def= Hom(Qp/Zp, J̃(K)) be the
p-adic Tate module of J̃K . Thus, if d = dim(G/S), then V

J̃
is a free Zp-module of rank

r + 2d. Note that the étale sheaf P may also be regarded as a free abelian group of rank
r equipped with a ΓK-action. Let PZp

def= P ⊗Z Zp. Then, according to Corollary 7.3 of
[FC], Chapter III, we have an exact sequence of ΓK -modules:

0 → V
J̃
→ VJ → PZp → 0

Let VG
def= Hom(Qp/Zp, G(K)) (respectively, VT

def= Hom(Qp/Zp, T (K))) be the p-adic
Tate module of GK (respectively, TK). Then V

J̃
itself fits into another exact sequence of

ΓK -modules:

0 → VT → V
J̃
→ VG → 0

Next let us consider the ΓK-module VG. Let a be the p-rank of the abelian variety
Gk

def= G ⊗A k over k. Then, as is well-known, there is a free Zp-module VGord of rank a
equipped with an unramified ΓK -action such that we have exact sequences of ΓK -modules:

0 → V ′
G → VG → VGord → 0

and

0→ V ∨
Gord(1) → V ′

G → VGss → 0

Here, the “(1)” is a Tate twist, and by “unramified action” we mean that Γunr
K acts trivially.

Thus, VGss is the “supersingular part” of the representation VG. Let us denote by VJet

the quotient of VJ by Ker(V
J̃
→ VGord) ⊆ V

J̃
⊆ VJ . Thus, VJet is a free Zp-module of

rank r + a, equipped with a natural unramified ΓK-action. Let VJmt ⊆ V
J̃
⊆ VJ be the

inverse image of V ∨
Gord(1) (⊆ VG) under the projection V

J̃
→ VG. Note that the submodule

VJmt ⊆ VJ is dual to the quotient VJ → VJet under the bilinear form on VJ arising from
the canonical polarization of J .

Now we would like to take a closer look at the ΓK -module VGss . First, recall that the
ΓK -module VG is crystalline. This fact is well-known from the general theory of Galois
representations arising from p-adic étale cohomology groups of varieties (see, e.g., [FC],
Chapter VI, §6, for a brief review of this theory, as well as a list of further references). Let

32



K0 ⊆ K be the maximal unramified extension of Qp in K. Then VG is (say, covariantly)
“associated” to a filtered module with Frobenius action (M,F ·(M),ΦM ), where M is a
K0-vector space, ΦM : M → M is a semilinear automorphism, and F ·(M) is a filtration
of M ⊗K0 K. It then follows from the above exact sequences that VGss is also crystalline,
and is associated to a filtered module with Frobenius action (Mss, F ·(Mss),ΦMss) which
is a subquotient of (M,F ·(M),ΦM ). Moreover, since VGss was constructed as the “su-
persingular part of VG,” it follows that the Frobenius action ΦMss on Mss is topologically
nilpotent. Now we have the following crucial

Lemma 8.1 : Any Γunr
K -equivariant Zp-linear morphism ψ : V

J̃
→ Zp (where Zp is

equipped with the trivial Γunr
K -action) factors through the quotient V

J̃
→ VGord .

Proof: First, note that since T is a torus, and Kunr contains only finitely many pth power
roots of unity, the restriction of ψ to VT must be zero. Thus, ψ factors through VG. Denote
the resulting morphism VG → Zp by ψ′. By the same argument, the restriction of ψ′ to
V ∨

Gord(1) must be zero. Thus, we obtain a Γunr
K -equivariant morphism ψGss : VGss → Zp.

But since VGss is crystalline, it follows from the basic theory of crystalline representations
that ψGss defines a Frobenius-equivariant, Kunr-linear morphism ψMss : Mss⊗K0 Kunr →
Kunr. (Here, Kunr is equipped with the trivial Frobenius action.) On the other hand, it
follows from the topological nilpotence of ΦMss that ψMss must be zero. Thus, ψGss is
also zero. This completes the proof. ©

Now let us return to the abelian covering YK → XK of degree p discussed above.
Suppose that this covering satisfies condition (*). Then there exists a covering ZKunr →
XKunr as in (*). Moreover, since VJ = Hom(ΔXK ,Zp(1)), it follows that ZKunr → XKunr

defines a Zp-linear morphism κ : Zp(1) → VJ which is Γunr
K -equivariant. By taking the

dual to κ (and using the fact that the polarization of J gives an isomorphism of VJ with
its Cartier dual), we obtain a Γunr

K -equivariant morphism κ∨ : VJ → Zp. Thus, by Lemma
8.1, it follows that κ∨ factors through VJet . In particular, κ factors through VJmt . On the
other hand, it is clear that Zp-coverings arising from morphisms Zp(1) → VJmt extend to
étale coverings of XAunr . Thus, in particular, it follows that YK → XK extends to a finite
étale covering Y → X. Thus, we have proven the following result:

Lemma 8.2 : Let YK → XK be an abelian étale covering of degree p. Let us assume
that YK is geometrically connected over K. Then YK → XK extends to a finite étale
covering Y → X if and only if YK → XK satisfies condition (*) above.

Next, we would like to consider more general coverings YK → XK . We begin with the
following

Lemma 8.3 : Let ψK : YK → XK be a finite étale covering such that YK is geometrically
connected over K. Suppose, moreover, that YK arises from a stable curve Y → S over S.
Then ψK extends to a proper surjective morphism ψ : Y → X.
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Proof: Note that if ψ ⊗A K = ψK , then ψ will automatically be proper and domi-
nant, hence surjective. Thus, it suffices to show the existence of such a ψ. Let us first
show the existence of such a ψ under the additional assumption that Xk is sturdy. Now
it follows from the general theory of stable curves that there exists a semi-stable curve
Y ′ → S equipped with a birational (blow-up) morphism Y ′ → Y such that Y ′ is regu-
lar. Moreover, it follows from the general theory of “elimination of indeterminacy” for
regular two-dimensional schemes ([Lipman], Lemma 3.1) that the rational map from Y ′ to
X defined by ψK becomes a morphism over some Y ′′, where Y ′′ is obtained from Y ′ by
blowing up points. Denote the resulting morphism by ψ′′ : Y ′′ → X. On the other hand,
for E ⊆ Y ′′

k ⊆ Y ′′ such that E ∼= P1
k, it follows from the sturdiness assumption on Xk that

ψ′′|E is constant. It thus follows that ψ′′ factors through Y , as desired.

Now let us prove the result in general (without the assumption that Xk is sturdy).
First, observe that by descent, it suffices to prove the result after replacing K by a finite
extension of K. Thus, we may assume that there exists a Galois admissible covering
θX : X ′ → X (over S) such that X ′

k is sturdy. Pulling back (θX )K to YK , one sees that
one obtains a finite étale covering Y ′

K → YK which extends to a Galois multi-admissible
covering θY : Y ′ → Y . On the other hand, if we pull-back ψK to X ′, we obtain a morphism
ψ′

K : Y ′
K → X ′

K . Moreover, since X ′
k is sturdy, it follows from the first paragraph of this

proof that ψ′
K extends to a morphism ψ′ : Y ′ → X ′. Thus, by composing ψ′ with θX , we

obtain a morphism φ : Y ′ → X whose restriction to Y ′
K is given by taking the composing

of (θY )K : Y ′
K → YK with ψK . Now, let us note that since θY : Y ′ → Y is an admissible

covering, it is, in particular, finite. Thus, if G is the Galois group of Y ′
K over YK , it follows

(from Zariski’s main theorem) that OY is obtained from OY ′ by taking G-invariants.
Hence, φ : Y ′ → X factors through a morphism Y → X which extends ψK , as desired. ©

Remark: As pointed out by the referee, one can also prove this Lemma (without reducing
to the sturdy case) by considering the number of points at which a (−1)-curve in Y ′′

(notation of the above proof) intersects other irreducible components of the special fiber
of Y ′′. The author finds the proof involving sturdiness to be more transparent, but this is
a matter of taste.

Let ψK : YK → XK be a finite Galois étale covering (with Galois group G) such that
YK is geometrically connected over K, and YK has a stable extension Y → S over S. Let
us also assume that ψK satisfies the following condition:

(†) Let H ⊆ G be any subgroup with H ∼= Z/pZ, and let YK → ZK be
the subcovering corresponding to H. Then ZK has a stable extension
Z → S over S, and, moreover, YK → ZK extends to a finite étale
covering Y → Z over S.

Let ℘ ∈ Y be a height one prime arising from an irreducible component of the special
fiber Yk. Then we claim that the inertia subgroup I℘ ⊆ G is trivial. (Here, by the inertia
subgroup, we mean the subgroup of elements of G that fix ℘ and act trivially on k(℘).)
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Indeed, first note that since Y is smooth over S at ℘, there cannot be any tame ramification,
so I℘ must be a p-group. If I℘ is nontrivial, then it contains a subgroup H ⊆ I℘ such
that H ∼= Z/pZ. But then the statement that H acts trivially on k(℘) clearly contradicts
condition (†). Thus, I℘ must be trivial, as claimed.

Now let ℘ ∈ X be a height one prime arising from an irreducible component of the
special fiber Xk. It follows from the preceding paragraph that ℘ is unramified in K(Y )
(the function field of Y ). Thus, if we let Y ′ be the normalization of X in YK , it follows
that Y ′ → X is finite over all of X, and étale over the complement of the nodes of X (by
purity). Then it follows by the same argument as that used in the proof of Lemma 3.12
of [Mzk] that Y ′ → X must be an admissible covering. In particular, Y ′ is a stable curve
over S, so Y = Y ′. Thus, it follows from Lemma 8.2 and the above discussion that we
have proven the following:

Proposition 8.4: The admissible quotient ΠXK → Πadm
X can be recovered entirely

group-theoretically from ΠXK → ΓK .

Proof: Indeed, clearly (by replacing K by a finite, tamely ramified extension of K) it
suffices to show that given an open normal subgroup H ⊆ ΠXK that surjects onto ΓK , the
issue of whether or not the resulting covering YK → XK is pre-admissible can be settled
group-theoretically. But, by the above discussion, YK → XK is pre-admissible if and only
if YK and XK admit stable extensions over S (which is well-known, by the criterion of
Serre-Tate, to be a group-theoretic condition), and, moreover, (†) is satisfied. On the other
hand, by Lemma 8.2, (†) is also a group-theoretic condition. This completes the proof. ©

Section 9: Consequences for Curves over Local Fields

We retain the notation of the preceding Section. Thus, in particular, we have a
stable log-curve Xlog → Slog. Let K∞ ⊆ K be the maximal tamely ramified extension
of K; let Γtm

K
def= Gal(K∞/K). Thus, we have a natural surjection ΓK → Γtm

K . We
saw in Proposition 8.4 that one can recover the admissible quotient ΠXK → Πadm

X (hence
also the surjection Πadm

X → Γtm
K ) group-theoretically from ΠXK → ΓK . Suppose that

(X′)log → Slog is also a stable log-curve over Slog. Let us denote (as in Theorem 7.2) by

IsomGO
ΓK

(ΠXK ,ΠX ′
K
)

the set of equivalence classes of isomorphisms ΠXK → ΠX ′
K
that are compatible with the

surjections to ΓK , modulo inner automorphisms arising from elements of the geometric
fundamental group ΔXK ⊆ ΠXK . Finally, let us denote by slog the special point Spec(k) ⊆
S equipped with the log structure pulled back from Slog. We would like to use Proposition
8.4 and Theorem 7.2 to obtain information on the special fiber of Xlog , but before we can
do this, we need to clear up some technical issues concerning the notion of “degree.”
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Thus, suppose that we are given an isomorphism α : ΠXK → ΠX ′
K
over ΓK . By

Proposition 8.4, this isomorphism induces an isomorphism αadm : Πadm
X → Πadm

X ′ over
Πslog . Let us denote the RT-degree of αadm (as discussed in Section 7) by dRT . We would
like to show that in this case (i.e., when αadm arises from α), dRT is automatically equal
to 1. In order to do this, we will have to look at several other notions of “degree” and
show that they all coincide. From this, it will follow that dRT = 1.

First, let us consider the p-adic fundamental class of XK :

ηX,p ∈ H2(ΔXK ,Zp(1))

(i.e., the first Chern class of a line bundle of degree one on XK). We also have the l-adic
fundamental class of XK :

ηX,l ∈ H2(ΔXK ,Zl(1))

for primes l different from p. Also, we have similar classes ηX ′,p and ηX ′,l for X ′. Let us
denote by

dp ∈ Zp
× (respectively, dl ∈ Zl

×)

the unique unit such that ηX,p (respectively, ηX,l) is taken to dp · ηX ′,p (respectively,
dl · ηX ′,l). Now we propose to prove that

dp = dRT = dl ∈ Q

Since dRT ∈ pZ, and dp ∈ Zp
×, it will follow immediately that dRT = 1.

Note that from the point of view of showing dp = dRT = dl, we may always replace
XK by some finite étale covering of XK , since we know how the fundamental class behaves
with respect to coverings (namely, it simply gets multiplied by the degree of the covering).
We shall see below in the proof of Theorem 9.2 that by replacing XK by such a covering,
we may assume that Xk is singular, and, moreover, that its graph is not a tree. We shall
assume this until the end of the following proof and statement of Lemma 9.1.

Let us first consider the l-adic theory. Let HZ be the first singular cohomology group
of the dual graph of Xk. (Recall that the dual graph is the graph whose vertices (respec-
tively, edges) are the irreducible components (respectively, nodes) of Xk.) Note that HZ is

equipped with a naturalGal(k/k)-action, hence a natural ΓK-action. LetHZl

def= HZ⊗ZZl.
Now in Section 8, we considered the p-adic Tate module of JK , but since the theory of
[FC] applies to the l-adic Tate modules as well, we can define similar exact sequences to
those discussed in Section 8 in the l-adic case. Thus, we let V l

J be the l-adic Tate module

of JK . Moreover, we obtain a ΓK-equivariant quotient V l
J → PZl

def= P ⊗Z Zl, as well
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as a submodule V l
T ⊆ V l

J . Here, we shall not regard PZl as the tensor product of some
Z-module P with Zl, but rather solely in its capacity as a quotient of V l

J . By the theory
of [FC], Chapter III, it follows that as ΓK -modules, we have a natural isomorphism

ζl : HZl(1) ∼= V l
T

We shall identify these two modules via ζl. This identification is justified by the following
observation: From our theory of irreducible components and nodes (Sections 1 and 5), it
follows that α (or, more precisely, αadm) induces a natural isomorphism αHZ : HZ

∼= H ′
Z

(where H ′
Z is the object obtained from X ′ that corresponds to HZ). Moreover, if we use

primes to denote objects obtained from X ′ that correspond to various objects obtained
from X, then we have a commutative diagram

HZl(1)
ζl−→ V l

T⏐⏐�αHZ
⊗Zl(1)

⏐⏐�
H ′

Zl
(1)

ζ′
l−→ (V l

T )
′

where the vertical arrows are those naturally induced by α. It is the commutativity of this
diagram that justifies the identification (based on ζl) proposed above.

Now we have an exact sequence 0 → V l

J̃
→ V l

J → PZl → 0 (analogous to the p-
adic version of this exact sequence which was reviewed in Section 8). Clearly, it may
be recovered group-theoretically from ΠXK → ΓK . In particular, PZl may be recovered
group-theoretically from ΠXK → ΓK . Next recall from the theory of [FC], Chapter III,
that there is a Z-bilinear pairing B : HZ ×HomZ(P,Z) → K×/A× = Z which induces an
injection of modules HZ ↪→ P , which becomes an isomorphism over Q. By Corollary 7.3
of [FC], Chapter III, by considering the various extension classes involved and applying
Kummer theory, the pairing

Bl
def= B ⊗ Zl : HZl × P∨

Zl
→ Zl

may be recovered from the extension 0 → V l

J̃
→ V l

J → PZl → 0. This pairing determines
an injection HZl ↪→ PZl, which becomes an isomorphism over Ql. Thus, we may recover
(group-theoretically from ΠXK → ΓK) the injection HZ ↪→ PZl.

Now, let us note that V l
J = Hom(ΔXK ,Zl(1)) = H1

ét(ΔXK ,Zl(1)). Thus, to summa-
rize, we have an injection

HZl(1) ↪→ H1
ét(ΔXK ,Zl(1))

as well as a surjection (obtained by using the isomorphism HQl
∼= PQl derived above from

B)
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H1
ét(ΔXK ,Ql)→ HQl(−1)

Now, by using the cup product operation in group cohomology, we obtain

HQl ⊗Ql HQl → H2
ét(ΔXK ,Ql(1))

Composing this with the natural inclusion HQ ⊗ HQ ↪→ HQl ⊗Ql HQl , we thus obtain

μl : HQ ⊗ HQ → H2
ét(ΔXK ,Ql(1))

Moreover, it follows from the theory of [FC], Chapter III, that there exists a nondegen-
erate bilinear form < −,− >: HQ × HQ → Q such that for all h1, h2 ∈ HQ, we have
μl(h1, h2) =< h1, h2 > ηX,l. Here, the bilinear form < −,− > is independent of l.

Let us denote analogous objects associated to X ′ by means of primes. Thus, it follows
immediately that we have a commutative diagram

HQ ⊗ HQ
μl−→ H2

ét(ΔXK ,Ql(1))
·ηX,l←− Zl⏐⏐�αHQ

⊗αHQ

⏐⏐�H2
ét(α)

⏐⏐�dl

H ′
Q ⊗ H ′

Q

μ′
l−→ H2

ét(ΔX ′
K

,Ql(1))
·ηX′,l←− Zl

whose vertical morphisms are those naturally induced by α. In particular, we obtain that
(up to identifying HQ with H ′

Q via αHQ) dl· < −,− >=< −,− >′. Moreover, the l-adic
theory of the last few paragraphs goes through entirely without change in the p-adic case,
as well. Thus, we obtain dp· < −,− >=< −,− >′. In particular, (since the graph of Xk

is not a tree, HZ 
= 0, so) dp = dl ∈ Q for every prime l different from p. Since dl ∈ Zl
×

and dp ∈ Zp
×, we thus obtain that dp = dl = ±1.

On the other hand, the relationship between dl and dRT can be established as follows.
First note that, as we saw in Section 5, there is a natural combinatorial (perfect) duality
(unrelated to the duality defined by the form B) between HZl and PZl. (Indeed, in Section
5, the discussion concerning “Lr” and “KY ” shows that PZl is the first homology group
of the dual graph of Xk (with Zl-coefficients), whereas HZl is – by definition – the first
cohomology group of the dual graph of Xk (with Zl-coefficients).) Let us denote this
duality by Dcom

l : HZl ⊗Zl PZl → Zl. Moreover, relative to the natural combinatorial
isomorphisms HZl

∼= H ′
Zl

and PZl
∼= P ′

Zl
(obtained from considering the isomorphisms

between the graphs of Xk and X ′
k
induced by αadm), we have Dcom

l = (Dcom
l )′ (since

“everything is combinatorial”). Thus, we shall identify HZl , PZl and Dcom
l with their

primed counterparts in what follows.

Now recall the natural inclusion HZl(1) ⊆ H1(ΔXK ,Zl(1)), and the natural surjection
H1(ΔXK ,Zl) → PZl(−1). Using the cup product in group cohomology, we thus obtain a
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pairing HZl(1) ⊗ PZl(−1) = HZl ⊗ PZl → Zl · ηX,l. It is tautological that this pairing is
simply Dcom

l (−,−) ·ηX,l. On the other hand, by recalling the definition of dRT (in terms of
inertia groups) and the fact that the quotient V l

J → PZl pertains to the inertia, it follows
immediately that we have a commutative diagram

HZl(1)⊗ PZl(−1) ∪−→ H2
ét(ΔXK ,Ql(1))

·ηX,l←− Zl⏐⏐�idHZl
⊗(dRT ·idPZl

)

⏐⏐�H2
ét(α)

⏐⏐�dl

HZl(1)⊗ PZl(−1) ∪−→ H2
ét(ΔX ′

K
,Ql(1))

·ηX′,l←− Zl

It thus follows that dl = dRT . Since dRT is positive, we thus obtain the following

Lemma 9.1 : We have dp = dl = dRT = 1. In particular, ηX,p (respectively, ηX,l) is
taken to ηX ′,p (respectively, ηX ′,l) by α.

We are now ready to prove the following result:

Theorem 9.2: Let K be a finite extension of Qp; let A ⊆ K be its ring of integers;
and let Slog be Spec(A) equipped with the log structure defined by the closed point. Let
Xlog → Slog and (X′)log → Slog be stable log-curves (equipped with base-points x ∈ X(K)
and x′ ∈ X ′(K)). Then there exists a morphism

ξk : IsomGO
ΓK

(ΠXK ,ΠX ′
K
) → Isomslog (Xlog

k , (X′)log
k )

that makes the following diagram commute

IsomGO
ΓK

(ΠXK ,ΠX ′
K
) −→ IsomGO

Γtm
K
(Πadm

X ,Πadm
X ′ )⏐⏐�ξk

⏐⏐�id

Isomslog(Xlog
k , (X′)log

k ) −→ IsomGO
Γtm

K
(Πadm

X ,Πadm
X ′ )

(where the horizontal morphisms are the natural ones).

Proof: This Theorem follows immediately from Theorem 7.2 (together with Proposition
8.4 and Lemma 9.1) if it is the case that at least one of Xk or X ′

k is not smooth over k.
Thus, it remains to consider the case when both Xk and X ′

k are smooth over k. In this
case, let us (after possibly replacing K by a finite extension of K, which won’t affect the
final result) assume that there exists a finite, abelian, étale covering YK → XK of degree p
such that YK extends to a stable curve over S. Let G be the Galois group of YK over XK .
By Lemma 8.3, YK → XK extends to a morphism Y → X. Moreover, by the review of the
structure of VJ given in Section 8, it is easy to see that one can always choose YK → XK

so that Y → X is not étale.
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Then I claim that Yk is singular. Indeed, suppose that Yk is smooth over k. Let
℘ ∈ X be the prime defined by the special fiber. Then ℘ must be ramified in K(Y ) (the
function field of Y ), for if it were not ramified, it is easy to see that Y → X would be
étale. On the other hand, since X and Y are both smooth over A, the statement that ℘ is
ramified in K(Y ) means that K(Yk) is an inseparable extension of K(Xk) (of degree p).
But this means that the genus of Yk (and hence of YK) is the same as that of Xk. But
since YK → XK is étale of degree p, this is absurd. This completes the proof of the claim.

Now suppose that we are given an isomorphism φΠ : ΠXK → ΠX ′
K
that respects the

surjections to ΓK . Then the covering YK → XK corresponds, via φ, to some covering
Y ′

K → X ′
K . Now we can apply the part of the Theorem that has already been established

to Y log and (Y ′)log . We thus obtain an isomorphism φY : Y log
k

∼= (Y ′)log
k (over slog). Now

it is easy to see that the irreducible component C of Y log
k that maps finitely to Xlog

k can be
characterized group-theoretically as the unique component such that abelian étale coverings
of Xlog

k of degree l (where l is prime to p) pull back to nontrivial coverings of C . Moreover,
note that nonsplit admissible coverings of Xlog

k pull-back to nonsplit admissible coverings
of Y log

k . Thus, one sees that φY induces a unique isomorphism φX : Xlog
k

∼= (X′)log
k such

that the morphism induced by φX on Πadm’s is compatible with the morphism induced on
Πadm’s by φΠ. This completes the proof of the Theorem. ©

Once Theorem 9.2 is in hand, the next natural step is to try to show that the isomor-
phism of Xlog

k
∼= (X′)log

k obtained from some φΠ : ΠXK → ΠX ′
K
lifts to an isomorphism

Xlog ∼= (X′)log over Slog. Unfortunately, we do not succeed in doing this in general. The
problem is as follows: Let GK be the p-divisible group over K defined by the ΓK-module
Hom(Qp/Zp, VJ ). Then the exact sequence 0 → V

J̃
→ VJ → P ⊗ (Qp/Zp) → 0 of ΓK

modules gives rise to an exact sequence of p-divisible groups over K:

0 → G̃K → GK → GP
K → 0

Moreover, it follows from the theory of [FC], Chapter III, that G̃K and GP
K extend, respec-

tively, to p-divisible groups G̃ and GP over S. (Here, G̃ is the p-divisible group obtained
from the semi-abelian scheme J̃ .) For readers used to this language, we note that it also
follows from the theory of [FC], Chapter III, that GK extends to a log p-divisible group
Glog over Slog. Finally, we also have primed objects G̃′, (GP )′, etc. arising from (X′)log .

Now let us observe that any isomorphism φΠ : ΠXK → ΠX ′
K
that respects the surjec-

tions to ΓK defines an isomorphism φGK : GK
∼= G′

K of p-divisible groups over K. Note
that φGK maps G̃K into G̃′

K , hence induces an isomorphism φG̃K
: G̃K

∼= G̃′
K . Moreover,

it follows from a theorem of Tate ([Tate]) that φG̃ extends uniquely to an isomorphism

φG̃ : G̃ ∼= G̃′. If we tensor this isomorphism with k, we thus obtain an isomorphism

φG̃k
: G̃k

∼= G̃′
k
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On the other hand, note that G̃k is the p-divisible group associated to J̃k. Moreover,
since J̃k is the identity component of the Picard scheme of Xk, the isomorphism φX :
Xlog

k
∼= (X′)log

k thus induces an isomorphism Pic0(Xk) = J̃k
∼= Pic0(X′

k) = J̃ ′
k, hence an

isomorphism

φPic0(X) : G̃k
∼= G̃′

k

Then the following fundamental question arises:

Question 9.3: Is φG̃k
equal to φPic0(X)?

Remark: If one can prove that the answer to Question 9.3 is affirmative, then it follows
formally from the techniques discussed in this paper that one can prove a version of the
Grothendieck Conjecture for hyperbolic curves over local fields. Unfortunately, however,
because we are only able to settle Question 9.3 in the affirmative under the additional
assumption that the abelian variety Gk is ordinary (see Lemma 9.4 below), we are only
able to prove (in the context of this paper) a relatively weak version of the Grothendieck
Conjecture for hyperbolic curves over local fields (see Theorem 9.7 below). In fact, a very
strong local version of the Grothendieck Conjecture is proven in [Mzk2]. The existence of
such a local result implies a posteriori that the answer to Question 9.3 is always affirmative.
Nevertheless, it is still of interest to what extent Question 9.3 can be settled within the
context of the present paper, and so we proceed to do this below.

Now we would like to settle Question 9.3 in the affirmative under the assumption that
Gk is an ordinary abelian variety.

Lemma 9.4 : Suppose that in the exact sequence of groups 0 → T → J̃ → G → 0
associated to the Jacobian J of X, the abelian variety Gk is ordinary. Then we have
φG̃k

= φPic0(X).

Proof: Indeed, in this case, the p-divisible group G̃k admits a canonical splitting

G̃k = G̃mt
k ⊕ G̃et

k

into multiplicative and étale parts. Since both φG̃k
and φPic0(X) clearly respect this split-

ting, it suffices to show that they agree on each of the direct summands. Note, moreover,
that G̃mt

k lifts naturally to a multiplicative p-divisible group G̃mt ⊆ G̃. Also, the submod-
ule of V

J̃
⊆ VJ defined by G̃mt

K is simply VJmt . But VJmt ⊆ VJ = H1(ΔXK ,Zp(1)) is the
portion of H1(ΔXK ,Zp(1)) that arises from étale coverings of X (or, equivalently, Xk).
Thus, the fact that φG̃k

= φPic0(X) on G̃mt
k follows from the commutativity of the diagram

in the statement of Theorem 9.2.
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Let G be the p-divisible group over S arising from the abelian scheme G → S. Thus,
we have a surjection G̃ → G. Moreover, φG̃k

and φPic0(X) induce isomorphisms Gk
∼= G′

k.
Let us refer to an isomorphism of an object with its Cartier as dual as a polarization
of the object. Now observe that we have two polarizations of Gk, one arising from the
polarization of VJ , and the other arising from regarding J̃k as Pic0(Xk). By the general
theory of semi-abelian schemes (as discussed in [FC]), it follows that these polarizations
of Gk coincide. Moreover, by Lemma 9.1, φG̃K

is compatible with the first of the two
(coinciding) polarizations of Gk, while, by definition, φPic0(X) is compatible with the second
of the two (coinciding) polarizations of Gk. In particular, the fact that φG̃k

= φPic0(X) on

G̃mt
k implies that φG̃k

= φPic0(X) on G̃et
k , hence on all of G̃k. This completes the proof of

the Lemma. ©

Now let us suppose that we are in a situation where φG̃k
= φPic0(X). Thus, it follows

that we have an isomorphism φ
J̃k

: J̃k
∼= J̃ ′

k such that the resulting isomorphism on p-

divisible groups lifts to an isomorphism φG̃ : G̃ ∼= G̃′ over S. By “Grothendieck-Messing
theory” (see, e.g., [FC], Chapter I, §3, for a review), it thus follows that φ

J̃k
extends to a

unique isomorphism φ
J̃
: J̃ ∼= J̃ ′ compatible with φG̃. Moreover, one checks easily that the

rest of the “semi-abelian degeneration data” for J (as in [FC], Chapter III, §2) is determined
by the extension 0→ V

J̃
→ VJ → PZp → 0 (and its l-adic counterparts, for l 
= p), as well

as other data that we have already seen to be group-theoretically characterizable. Thus,
we conclude (by the natural categorical equivalences of [FC], Chapter III, Corollary 7.2)
that we have an isomorphism

φJ : J ∼= J ′

which is uniquely determined by the condition that it is compatible with φGK . Moreover,
φJ is compatible (by Lemma 9.1) with the canonical polarizations on J and J ′. Thus, by
Torelli’s theorem ([Milne], Theorem 12.1), we conclude that there is an isomorphism

ψ : X ∼= X ′

such that the isomorphism induced by ψ on Jacobians is ±φJ . Note that ψ always extends
to a unique log-isomorphism ψlog : Xlog ∼= (X′)log .

Definition 9.5: Let us call X ordinary if Gk is an ordinary abelian variety. Let us
call X equi-hyperelliptic if either (i) XK is hyperelliptic; or (ii) Xlog

k does not admit an
slog-automorphism that induces −1 on Jk.

Note that if p is odd, then (ii) is equivalent to the condition that Xlog
k not arise as a

logarithmic degeneration of a smooth hyperelliptic curve. (Here, by “logarithmic degener-
ation,” we mean that it arises as the special fiber of some generically smooth, generically
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hyperelliptic log-curve over a trait equipped with the log structure defined by the special
point.) Indeed, that (ii) implies this condition is clear. On the other hand, suppose that
this condition is satisfied, but that there exists an automorphism α of Xlog

k that induces
−1 on Jk. Thus, α2 = id. But then it is easy to see that by forming the quotient of Xlog

k by
the group < 1, α >, we can exhibit Xlog

k (up to adding some more marked points to Xlog
k

and modifying the log structure accordingly) as an admissible double covering of a stable
log-curve curve of genus 0. In particular, Xlog

k will then be a logarithmic degeneration of
a smooth hyperelliptic curve, as desired.

Moreover, we have the following

Lemma 9.6 : If X is equi-hyperelliptic, then we can choose ψ to be compatible with
φJ .

Proof: Indeed, this is clear in case (i) (of the definition of “equi-hyperelliptic”) since
then the hyperelliptic involution of XK (which induces −1 on the Jacobian) extends to an
automorphism of X, so we can always adjust ψ accordingly. On the other hand, suppose
that we are in case (ii), and that ψ is compatible with −φJ . Then ψk differs from the
isomorphism φX : Xlog

k
∼= (X′)log

k by an automorphism α of Xlog
k that induces −1 on Jk,

thus violating the assumption that X is equi-hyperelliptic. This completes the proof. ©

If Xlog
k does not satisfy condition (ii) of Definition 9.5, let α be the (necessarily

unique) offending automorphism. Let ι ∈ IsomGO
Γtm

K
(Πadm

X ,Πadm
X ) be the (equivalence class

of) isomorphism(s) induced by α. Note that by Theorem 7.2, if IsomΓtm
K
(Πadm

X ,Πadm
X ′ ) is

nonempty, then Xlog
k has an offending automorphism if and only if (X′)log

k does. Now let
us define

IsomGOH
Γtm

K
(Πadm

X ,Πadm
X ′ )

to be the set of equivalence classes of elements of IsomGO
Γtm

K
(Πadm

X ,Πadm
X ′ ), where two classes

of isomorphisms Πadm
X

∼= Πadm
X ′ are considered equivalent

(1) if they are equal or differ at most by composition with ι (when α exists);

(2) if they are equal (when α does not exist).

It is easy to show that this equivalence relation is well-defined, and compatible with the
equivalence relation used to define IsomGO from Isom.

Now we are ready to state the strongest version of the Grothendieck Conjecture that
we are able to prove (in the context of the present paper) in the local case.
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Theorem 9.7: Let K be a finite extension of Qp; let A ⊆ K be its ring of integers;
and let Slog be Spec(A) equipped with the log structure defined by the closed point. Let
Xlog → Slog and (X′)log → Slog be stable log-curves (equipped with base-points x ∈ X(K)
and x′ ∈ X ′(K)). Suppose that at least one of X and X ′ is ordinary. Then there exists a
(not necessarily unique) morphism

ξS : IsomGO
ΓK

(ΠXK ,ΠX ′
K
)→ IsomSlog (Xlog , (X′)log)

that makes the following diagram commute

IsomGO
ΓK

(ΠXK ,ΠX ′
K
) −→ IsomGO

Γtm
K
(Πadm

X ,Πadm
X ′ )⏐⏐�ξS

⏐⏐�
IsomSlog (Xlog , (X′)log) −→ IsomGOH

Γtm
K

(Πadm
X ,Πadm

X ′ )

(where the morphisms other than ξS are the natural ones).

Moreover, if either X or X ′ is equi-hyperelliptic, then one can choose ξS uniquely such
that the above diagram commutes when the projection on the right is replaced by the
identity on IsomGO

Γtm
K
(Πadm

X ,Πadm
X ′ ).

Finally, just as we derived Theorem 7.4 from Theorem 7.2, we have the following
“outer automorphism version” of Theorem 9.7: First, let us denote by

ρX : ΓK → Out(ΔXK )

the representation derived from the extension 1 → ΔXK → ΠXK → ΓK → 1. Then we
have the following

Theorem 9.8: Let K be a finite extension of Qp; let A ⊆ K be its ring of integers;
and let Slog be Spec(A) equipped with the log structure defined by the closed point. Let
Xlog → Slog be an ordinary stable log-curve of genus g. Then the isomorphism class of
Xlog is completely determined by the isomorphism class of the representation

ρX : ΓK → Out(ΔXK )

Remark: Note that Theorem 9.8 shows that ordinary hyperbolic curves over local fields
behave quite differently from ordinary abelian varieties over local fields. Indeed, given an
ordinary elliptic curve Ek → Spec(k), it is easy to see (using the Serre-Tate theory of
liftings of ordinary abelian varieties) that there exist many mutually nonisogenous liftings
E → Spec(A) (where A = W (k)) of Ek to A, for which the representations
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ρE : ΓK → Out(π1(EK)) = Aut
Ẑ
(π1(EK))

are isomorphic.

Section 10: The Main Result over Number Fields

In this Section, we prove the Grothendieck Conjecture for closed hyperbolic curves
over number fields. The only result from Section 9 (the local theory) that we will use is
Theorem 9.2; the rest of Section 9 is unnecessary. We will concentrate here on the closed
case, since the open case has already been proven in [Tama].

Let K be a finite extension of Q. Choose an algebraic closure K of K, and write ΓK

for Gal(K/K). Let XK → Spec(K) be a smooth hyperbolic (i.e., of genus ≥ 2) curve. (By
this, we shall always mean that XK is geometrically connected over K.) Suppose that we
are given a base-point x ∈ X(K). Let ΠXK

def= π1(XK , xK); ΔXK

def= π1(XK , xK). Thus,
we have a natural exact sequence

1 → ΔXK → ΠXK → ΓK → 1

Then we have the following result

Theorem 10.1: Let K be a finite extension of Q. Let XK → Spec(K) and X ′
K →

Spec(K) be smooth hyperbolic curves over K, equipped with base-points x ∈ X(K) and
x′ ∈ X ′(K)). Then the natural map

IsomK(XK ,X ′
K)→ IsomGO

ΓK
(ΠXK ,ΠX ′

K
)

is bijective.

Proof: Pick an isomorphism α : ΠXK
∼= ΠX ′

K
compatible with the surjections to ΓK . Let

A be a localization of the ring of integers of K over which XK and X ′
K extend to smooth

curves X → S, X ′ → S (where S = Spec(A)). Let I → S be the scheme IsomS(X,X ′) of
isomorphisms of X with X ′ over S. It is well-known that I is finite and unramified over
S. By localizing A further, we may assume that I is étale over S. Fix a prime number
l. By localizing A further, we may assume that l ∈ A×. Let ℘ be a finite prime of A;
let A℘ be the completion of A at ℘. By base-changing to A℘ and applying Theorem 9.2,
we conclude that there exists a unique β ∈ I(A℘) such that the isomorphism defined by
β induces the same isomorphism as α on the first l-adic cohomology groups of X and
X ′. Note that β is, in fact, defined over some finite Galois extension L of K. Denote the
resulting point of I(L) by γ. To see that γ descends to K, it suffices to note that γ is
the unique point of I(L) that induces the right isomorphism on the H1(−,Zl)’s. Thus, γ
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descends to K. Thus, we obtain a K-isomorphism ψ : XK
∼= X ′

K corresponding to γ. To
see that the isomorphism ΠXK

∼= Π′
X induced by ψ coincides with the original α (up to

an inner automorphism induced by an element of ΔXK ), we apply the same argument as
that given in [Tama] or the discussion preceding Theorem 7.2. (Note that here, we also
use the well-known fact that ΓK has trivial center.) ©

Now, as usual, we denote by

ρX : ΓK → Out(ΔXK )

the representation derived from the extension 1 → ΔXK → ΠXK → ΓK → 1. Just as in
the discussion preceding Theorem 7.4, we may form Outρ(ΔXK ,ΔX ′

K
). Then we have the

following

Theorem 10.2: Let K be a finite extension of Q. Let XK → Spec(K) and X ′
K →

Spec(K) be smooth hyperbolic curves over K. Then the natural map

IsomK(XK ,X ′
K)→ Outρ(ΔXK ,ΔX ′

K
)

is bijective.
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